$$
5.1902 \cdot 19
$$

ASIATICK RESEARCHES: OR

TRANSACTIONS

OF THE
S O C II $\mathbb{E} \mathbb{Y}$, INSTITUTEDINBENGAL,

FOR ENQUIRING INTO THE

HISTORY AND ANTIQUITIES, THE ARTS, SCIENCES, AND LITERATURE,
${ }^{0} \mathrm{~F}$

Volume rhe Fourteenth.

$$
\mathbb{C} L \mathbb{C} \cup T T A:
$$

PRINTED BY PHILIP PEREIRA, AT THE HINDOOSTANEE press. $18 \cong 2$.

CONTENTS

OF THE

FOURTEENTHVOLUME.

1. Account of a Discovery of a modern imitation of the Védas, with Remarks on the Genuine Works. By Francis Ellis, Esq.
II. Journal of a Survey to the Heads of the Rivers, Ganges and. Jumna. By Captain J. A. Hodgson. 60
III. Latitudes of Places in Hindustan, and the Northern Moun- tains; with Observations of Longitude in the Mountains, according to Immersions and Emersions of Jupiter's Satelo Iites. By Captain J. A. Hodgson. 153
IV. Description of a Zoophyte, commonly found about the Coasts of Singapore Island. By Major General Thomas Hardwicke, F. R. S. and V. P. of the A. S. 180
V. Description of a Substance called Gez or Manna, and the In- sect producing it. By Major General Thomas Hardwicke, F. R. S. and V. P. of the A. S. 182
VI. An account of Trigonometrical and Astronomical Operationsfor determining the Heights and Positions of the princi-pal Peals of the Himálaya Mountains. By CaptainJ. A. Hodgson and Lieut. J. D. Herbert.187
VII. On the ancient Geography of India. By Lieutenant ColonelF. Wilford.373
VIII. On the Sorex Glis. By Messrs. Diard and Duvaucel, communicated by Major General Hardwicke, F. R. S. and $V . P$. of the $A . S$.
1X. On an Indian method of constructing Arches. By Captain Mackintosh. 476
X. An account of the Cootub Minar, and the Inscriptions in its vicinity. By Walter Ewer, Esq.

Appendix and Errata.

DREECTIONS TO THE BINDER.

Plate	1	to face page	180
--	2	$\underline{\square}$	182
	3	4	187
--	4		225
	5		230
-	6	-	235
	7		280
-	8		339
-	9		471
-	10		476
-	11	$\underline{\square}$	480

TRANSACTIONS

OF THE

ASIATICK SOCIETY.

L.

Account of a Discovery of a modern imitation of the Vedas, with Remarks on the Genuine Works...

Bý FRANCIS ELLIS, Esq.

IN proceeding to give an account or̂ an instance of literary forgery, or rather, as the object of the author or authors, was certainly not literary distinction, of religious imposition without paralle, I shall in the first instance, confine myself to the description of the writings in which it is contained, adding, as speeimens, a few passages selocied from them, and such remarks as are necessary for the distinct elucidation of the subjectar, For, as my sole object is to shew what these writings really are,
a statement of their contents, as simple as prespicuity will allow, will effect this more readily than a lengthened dissertation; though the subject, calculated as it is to excite serious reflection, is well worthy ef a more detailed consideration.

In the year 17\%8, a book was printed at \mathbb{P}^{2} aris, entitled ${ }^{66} \mathbb{L}$, Exour "Védam, ou Ancien Commentaire du Védam, contenant l'exposition des ${ }^{66}$ opinions religieuses et philosophiques des Irndiens. Traduit du Samo "s scretam par un Brame." "The origin of this work is stated in the folo lowing extract from the preface: "Cet ouvrage vient originairement " des papiers de M. Barmaedeny, second membre du conseil de Pondi${ }^{6}$ cheri; \mathbb{V}. De Modeve, connu par son esprit et par ses services, en ${ }^{66}$ apporta des Indes une copie, dont il fit présent a M. De Voltare, qui ${ }^{6}$ I' $^{\text {'envoya en } 1761}$ a la Ribliotheque de Roi de France. ©et illustre ${ }^{6}$ ecrivain (Vide Siecle de Lours XV. Chap. XXIX. Not.) nous ${ }^{66}$ apprend que ce livre a été traduit du Samscretam par He gyand prêtre ${ }^{66}$ ou archi-brame de la pagode deiCherenghan, vieillard respecté par sa ${ }^{6}$ vertu incomptible.s The note in Volmaife's wod here referred t_{3} is as follows: "Lue grand prêtre de L'ile Oherengham, tans la pro ${ }^{66}$ vince d'Arcate, qui justifia 1 C Chevalier Lass, contre les accusations s6 du Gouverneur Duperix, etait un vieillard de cent années, respecté ${ }^{66}$ par sa vertu incorruptible. Il savaif le Français et rendit de grands ser66. vices a la compagnie des. Indesa C'est lui qui traduisit L'Ezour ${ }^{66}$ Wédam, dont j'ai remis le manuscript ala Bibliotheque du Roi.".-The copy of this work thus traced through the hands of Volfarre to the library of the king of France, not being complete, the editor adds:
"Nous avons supplié ce qui manque a cette copie par celle qu'en avoit «6 faite M. Anquetil du Perrong egalement distingué par son savoir et 66 célébre par ses voyages," \&c. It is clear, therefore, that Voltaire considered this an authentic work, and actually, as stated to be, a Come mentary on the Védam, and Anquetil du Perrón, who hăd passed many years of his life in India and professed a profound knowledge of its religion, antiquities and literature, assisted in bringing it forward, as such, to the world. Now, observe what M. Sonnerat says on this subjecta ${ }^{66}$ Il faut ${ }^{66}$ bien se garder de mettre au nombre des livres canoniques indiens I^{\prime} ' Ezour "Védam, dont nous avons la pretendue traduction a la Bibliotheque du ${ }^{66}$ Roi, et qui a été imprimée en 1778 , - Ce n'ést bien certainement pas ${ }^{66}$ I'un des quatres Védams, quoiqu'il porte le nom; mais, plutôt un चivr'e ${ }^{66}$ de controversie ecrit a Masulipatam par un Missionnaire. Cest une *6 réfutation de quelques Pouranons a la louange de Vicrienong" qui sont ss de bien des siecles posterieurs aux Védams. On voit que Theteur s a voulu tout samener a la religion Chétienne, en y laissant cepen= ${ }^{6}$ dant quèlques erreurs, ain qu'onse reconnût pas le Missionnaire th sous le mantears Brame. C'est donc a tort que M. ne Voltaire et 66 quelques autres donnent 品 ce livre une importance qu'il ne merite pas 66 et le regardent comme canonique."-M. Sonnerat's representation of the work is perfectly correct, except that he must be mistaken in saying it was written at Masulipatam; all the Sanscrit terms used in it, being altered according to the Bengali pronunciation, as will be more particu: larly shewn hereafter. An inspection of the printed book, which was a short time in my possession, led me, therefore, to conclude, that this work was written in the Bengáli language by one of the missionaries and re=
composed by the author in French: for, as the object of it is undoubtedly that, stated by M. Sonnerat, namely to refute the doctrines of the Parránas and to lead indirectly to the introduction of Christianity, it was evident, that to altain this object, it must have been originally composed in one of the Indian dialects.

At the time this inference was drawn, I was not aware thai there existed any means of verifying it, and it was chance that enabled me to ascer tain that the original of this work still exists among the manuscripts in the possession of the Catholie missionaries at Pondicherry, which are understood to have originally belonged to the society of Jeswits. Besides the Ezour Védam, there are, also, among these manuscripts, imitations of the other three Védas; each of these are in Sarscrit, in the Roman character, and in French, these languages being writtea on the opposite pages of the manuscripts, to give them the appearance of originals with translations annexed. As the best way of proving to those competent to form an opinion on the subject, what these warks really are, I.shall, previously to noticing the-others, make an extract from the commencement of the "Chamo Bedo," in both languages; giving, the Sanscrit as it appears in the work, and in its propes:orthography, and I shall then state the substance of each chapter of the five books into which the work is divided, from the abstracts in the margin of the manuscript. I must premise, however, that the corrupt pronunciation of the Sanscrit and the peculiar mode of orthography, adopted by the author to express its, has made the reduction of the Sanscrit to its natural state, difficult and Lable, to error.

Tre supposed translation of the ${ }^{66}$ Chamo Redog ${ }_{9}^{9 *}$ (Sama Veda,) thus commences:
${ }^{66}$ Zoimini touchét de compassion è pressér du desír dè sauyes les ${ }^{66}$ hommes qui dans ce siécle de peché s'estoient fait des fausses iacées de ${ }^{66}$ la divinité entreprend de les rappeller, a lidée du vray dieur en retraçant ${ }^{\text {of }}$ a leurs ieux ce que fait son essence et son caracthere, et d'abord il com${ }^{66}$ 'mence parluirofir les hómmages de' la maniere quir surit Adonation ${ }^{66}$ au dieu quia mille tetes; il est le vengeur du crime le soutien de tout ce ${ }^{66}$ qui existe et le gourou da monde, il esteternel desan neture; in n'a jamais ${ }^{66}$ eu de principe; il n'aura jamais de fin et ne fut jamais sujet au prestige ${ }^{66}$ une syllabe compase son nom; il est le createur de toutes choses; il est ${ }^{66}$ l'etre au dessus de tous des etres, et le dieu de toute verité; il est l'etre par ${ }^{6 s}$ lui mesme; il est le voy de voys et le maitre des maitres et le lieu ou il fait us.sa demeure est le lieu'du vraybonheurs; il est esprit de sa nature toujours ${ }^{66}$ le mesme et toujours venerable; il ne prouve dans. lui ni changement ni ${ }^{\text {ss }}$. vieissitude , il est heureux et heureux par lui mesme; il est en fin le coma ${ }^{\text {ss }}$ ble de toutes perfections et au dessus de toutes nos.connoissances, c'est ${ }^{66}$ au dieu qui a pour ceux qui l'envoquent la tendresse d'un wray pere " qui j"offre mes adorations et mes hiommages et c 'est par la que je com"s mence le livre que je sas mettre au jour; puissent tous les hommes " imiter cet example et comnencer-tous leurs ouvrages par offrir leurs

* This title is, also, written "Chámo Yédan."
t The orthography and wording of the original have been carefully setrined in this extract.
${ }^{66}$ hommages au vray dieu-Dans ce moment narajon qui avait entendu ${ }^{66}$ parler des differentes metamorphoses de la divinité et. qui avait donné ${ }^{6}$ dans toutes ces reveries se present les mains jointes devant Zomini, le ${ }^{66}$ maitre du Vedon, le pria de la lui enseigner et lui dit."
N. ${ }^{66}$ Je suis seigneur un hommè tout livre a l'crreur je m'adresse a ${ }^{66}$ vous comme au plus eclairé de tous les hommes pour vous prier de ${ }^{66}$ m'enseigner la route que je dois desormais suivere pour me sauver.".

2. "Il n'est point de vraye comnoissance que cette que nous commu= ${ }^{66}$ niquer Le Vedon, Le Vedon est ce qu'il y a de plis grand, de phis ${ }^{6}$ sublime, de plus caché, et les hommes livrés a l'erreur ne furent jamais "f en etấ ne de le gouter ni de le comprendre."

The Sanscrit of the preceding is as follows: the first line is written exactly as in the original, in the second the orthography is corrected, a few syllables conjecturally supplied, and a literal translation, according to this reading, subjoined.

PROSE.

Poromo karoniko zaimeni koli kolmocho,
Parama cárinico jaimenih cali calmasha.
The most merciful Jameni knowing the impurity of Calio

Bibranio sedocho brommono ozatartoto,
Vibhränta chétasah brahmanah ajnyátárthatah,
The minds of men were much confounded, and that from the want of a knowledge of the deity.

Ognano bolon ouddaran monochi bibedio,
Ajnyána udd háram manasi vivédya.
The power of ignorance had sprung in their minds.

Adoluu brommo sorgion boktun arebe,
Ádau brahmácharyam vactum áreblé.
Began to declare the duties of Brahmachari.

Totrádohu poromainando siteno poromechoron naramo,
Tatrádau paramánanda chiténa paraméswaram nanáma.
Then in the beginning, with a most delighted mind, he worshipped the most high God.

VERSE.
1.

Oum choosero chirichan debon duxto nigroho Farokon,
Om Sahasra śirsham dévam dush'ta nigraha cáracam.
On! the god with a thousand heads, who causeth the destruction of the wicked.

Stapokon zontou adinampronotochi zogaot gurum.
Strápacam joniu ádinám pranatósmi jagat gurunz.
The establisher of all creatures, HHM, I reverence the chief of the world.
$3:$
Adaran chorbo lokanam ennadinidonons probunc. Ádháram serva lócánám anadi nidlhanam prab̂hum. The supporter of all worlds, the Lord without beginning or end.
4.

Obedion chorbo majanam pronotochi mohotprobur, Ab hédyam serva máyánàm pranatósmi mahatprabhum. Him, not subjected to all the Máyàs, I reverence the great Lord.

> 5。

Okioram-poromon mition bichisakion bichuochon bobun, Acsharam paramam nityam viswáchyam viswásám b hwvam. The indestructible, the lighest, the eternal, Hin, who is called the universe, the station of the happiness of the universe.

6.

Chorno totuamojon debon pronotochi poratporon;
Serva tatwa nayam dévam pranatósmi parátparam.
The God, who energizes all elements, Hix, Ireverence, the highe est of the high.
7.

Prodono pourouchon chiddon chorbo gnanoiko koronon, Pradhána purusham sidd,ham servajnyán'aica cáranam. The chief male, the fixed, the sole cause of all knowledge.
8.

Porat porotoron debon pronotochimoha probun,
Parot parataram dévam pranatósmi maháprab,hum. The most high God, him I reverence, the great Lord.
9.

Porongioti porom damopobitron poromon podon,
Paramjyoti param dihámah pavitram paramam padam: The highest light, the highest throne, the pure, the highest place.
10.

Chodoilko babin poromon pronotochi mahachojon,
Sadàica bhàváam paramam pranatòsmi malıá sayam.
Him, whose nature never changes, the most high, I reverence H_{m}, whose ideas are sublime.
11.

Tonchodanondo sit matron serextanam sorbo serexton,
Tam sadánanda chin mátram sreshtánàm sarva sréshtatam.
That pure spirit which is ever happy, of excellent things the most excellent.

C
12.

Nirgounon nioton naton pronotochi kritanzoli,
Nirgunam niyatam nátham pranatòsmi critanjalit.
Him, who is without qualities, who never varies, the Lord, him I worship with joined hands.
13.

Porecho poromonodnctioronagoto bossolo,
Parèsa paramánanda śaranágata vatsala.
O thou, the high Lord, O thou the pre-eminently happy, thou who shewest mercy to those who take refuge with thee.

14.

Trahimar koruno chindo mootito narnostute,
Trahi màm carunà sind, ho' mestidáya namastuté.
Deliver me, O sea of mercy! for the sake of eternal beatitude, I worship thee.

> PROSE.

Iti chi=chiochi kiarton brommo toutocho,
Hti'sishya 'sicsh'ár tham bralma stutasya.
Thus it was declared as an admonition to the disciples of Mm, who thus lauded the Supreme.

Iochin chomoje nanabotaro serobome boto narajono mahamaho, Étasmin samayé nán'ávatára' 'sravanav-at Narayana mahamaham. At that time Narayana, who had heard of the variousincarmations?

Obapotochat kretansoli boutua bedo gourun,
Avápaiasmat critánjelih h,hútwá Védla gurum.
Approached the great one and, reverently joining his hands' he drew near to the teacher of the Védla.

Zoimeni richi boron prortyo ${ }_{9}$
Jaimeni rïshi varam prapaya.
To Jaineni, the select of the sages.

TERSE.
15.
N. Chondino bimoundatmua no kinchit leritoban boulw

Aham dína vimúdatma na cinchit critavan bhuvi.
I am a wretch whose mind is void of understanding, who have done no good in the world.
16.

Kenome loronom noto' koipoja becto bistoron,
Céna me taranam nátha crïpaya vada vistaram.
Wherefore, O Lord! have pity on me, and tell me, at length by what means salvation may be obtained.

$$
1 \% .
$$

Ton bina gnojoto loke nobidionte kodassona,
Twám viná jnyátayó lócé na vidyanté cadáchana.
Besides Triee, there is none in the world, who knows any thing respecting it.
18.
Z. Bina bedat notognanam bedohi dourguomon poron,

Viná védát natajnyánam védahi durgamam param.
The knowledge of that, can be obtained only by the Véda, but a knowledge of the $V e^{d} d a$ is most difficult to acquire.
19.

Pachondonadicarisso, bedo chastro chemussojon, Páshandanástic’àrch, han Véda Śsístra samuchchayam. Heretics and atheists have confused the whole of the Véda Śástra.

Thus specimen of the original will suffice to convince those acquainted with the Sanscrit and with the changes it undergoes in the Prácrits and spoken dialects, that this work, whether the author were a Native or a European, must either have originated in the provinces of Bengal and Opissa, or have been composed by some one, who had there learned the rudiments of the Sanscrit. As the establishment of this fact will tend materially to facilitate the tracing of these forgeries to their origin, I shall, also, endeavor to prove it to the satisfaction of those not acquainted with the Sanscrit and its derivative dialects. The Bengáli, with which the Uddaya corresponds in most points to which the following obser w vations extend, is written in a character derived in form and system from the Nágari, but rejecting many of the letters of the latter and permuting others in a very corrupt but uniform mode: the more prom
minent of these changes are the rejection* of the hissing and harsh sibilants, being the thirity-first and thirty-second consonants of the Nágariz system, and the substitution for them of the sof sibilant, expressed throughout these works by the dereneh ch; the wtier rejection of ve as a letter and the substitution of $b a$ in all cases where it ought to occur; the conversion of the frst vowel, a short, into o, of the diphthong $a i$ into o i; of $y a$ into $j a$, (written in the preceding extract gea) of cha into $s a, j a$ juto za, and of cslid into cya (hia) a comparison of the original extract with the intelined correction will furnish repeated examples of each of these changes-thus the soft sibilant eft is written for the hissing sibilant in the word chorbo, properly sarva, and for the harsh sibilant in richi, rishh; in the first syllable of chiriction (s'irs'ham) it is used for the corresponding Sanscrib letter, but in the last it is substituted for the harsh sibilant. In words bedo (Véla), debo (dèva), and many others va is converted to ba; majanam (máyánàm) is an instasce of the conversion of $y a$ into $j a$; somussojon (samuchchayam) of cha into sa and (Zomeni), (Jamenı), of $j a$ into $z \alpha$ and of aitinto oi; oikioram for acsharam; affords an instance of the lapse of the cstia-An the Pseudowedas conform, in the Sanserit part to these changes as unififmly as they will be found to ${ }^{2}$ take place in the preceding extract; and in addition, however, to these dialectic variations the author has still further disfigured the language by dropping all the aspirated letters, as cha, sha, chha, \&c. and by retaining. only one of many compound coasonants, as in the word writen tockin for tasmin, \&c.

[^0]Tuefollowing abstracts of the several chapters are inserted in the margin of the French part and are evidently intended for the information of the European reader only, as the views of the author are more explicitly declared in them, than can possibly be gathered from the text either of the original or translation.

```
"LIVRE \(1^{\text {er }}-\) CHAPITRE \(1^{\text {er }}\) " \("\)
```

${ }^{66}$ Contient l'exorde de tout l'ouvrage, le motif quia engagé Z Zoimenn ${ }^{6}$ a le composer-Dedicace de son Live a L'Etre Supreme-caractere ${ }^{66}$ du vrai gourou et ses fonctions.".

"CHAPITRE $2^{\text {nd }}$, "

${ }^{66}$ Qur contient une grande Idée de Dieu et de ses attributs et refute la ${ }^{\text {}}$ fausse idée que les faux Védes donnent de la Divinité, abregé de la ${ }^{66}$ creation du monde.",

"CHAPITRE $3^{m e . " ~}$

${ }^{66}$ Traite de la creation fabuleuse des faux Véds, fait la refutation; il ${ }^{\text {s6 }}$ traite ensuite, de la vertu ef de ceux qui sont habiles et inhabiles a lire ${ }^{66}$ le Védam."

"CHAPITRE $4^{\text {mo }}$."

${ }^{66}$ Parle du vrai Dieu et du culte qu'on doit lui rendre-en etablissant 66 le cutte du vrai Dien, il condamne le culte que Nararon veut qu'on ${ }^{66}$ rende a Wichnout et Chib. ${ }^{9}$

""LIVRE 2"-CHAPITRE $\boldsymbol{I}^{\text {er." }}$

6 Parle des 5 opinions fabuleuses de la Creation: la 1 ere appellée Pad${ }^{65}$ mokolpo, attribuée a Vichnoú; la $2^{\text {nde }}$ a la Tortuë; la $3^{\text {me }}$ au Cochon; la 66. 4^{me} a Gonech; la 5^{me} a la Deesse Biroza; ensuite il parle de la $2^{\text {nde }}$ Crea${ }^{6}$ tion, attribuée a la Tortuë, du Beluge, de la Metamorphose, de L'Etre ${ }^{66}$ Supreme en Tortuë, de la Creation d'une fille avec laquelle la Tortuë ${ }^{66}$ se marie, des 3 mondes qui naissent chacun d'un Oeuf que la fille ${ }^{66}$ produit au bout d'un million d'ans-du $1^{\text {er. }}$ sorlit le Chouargam un ${ }^{66}$ million d’années apres sortit la Terre, du $2^{\text {nd }}$ Oeuf, \&c. elle crea dans 6 le Chouargam, Kachiopo et Odite qui eurent pour enfans Bamon, Indro, ${ }^{66}$ Coubero, les Greants, de Bamon est la caste des Brames, d'Indro celle ${ }^{66}$ des Roys, de Coubero celle des Marchants, and des Geants celle des "Choudras."

$$
\text { "CHAPITRE } 2^{\text {nd. }}
$$

${ }^{6}$ Renferme la refutation du precedent-belle Idée de Dieu tirée du \therefore. vrai Védam.

" Chapitre $3^{\text {me.." }}$

${ }^{6}$ Contient la continuation de la Metamorphose de L'Etre Supreme en "Tortuë, il renferme le systeme des Metamorphoses totales et partiales, c'est " a dire qui renferment toute la divinité; systeme qu'on trouvera bien «s developpé dans L'Odorbo Bedo ou $4^{\text {me }}$. Véd, Liv. qui en parle ex pro${ }^{66}$ fesso, refutation de ce systeme-beau caractere du vrai dieu. Zomeni "fait dans ce chapitre Nararon auteur du faux Chama Véd, remarque " essentielle."

66 Contman la Creation attribuée au Cochon, ciest Rramas ou Lentue ${ }^{66}$ Supreme, sous le nom de Curs qui se metamorphose en Cochoni et ${ }^{66}$ Parvatr sa famme en. Truye pour retirer es squtenir la Terre, ${ }^{2}$ ${ }^{66}$ description du Lieu qu' habitait Chna?

> "CHAPITRE qd."

66 Conrantr la refutation du precedent.9?
"CHAPTRE ${ }^{m e}$?
-Contient la description de la creation que fit le Dieu Cochon, le uf fond du systeme de cette creation se trouve dans le corps du vrai ${ }^{6}$ Ezowr Téd."

$$
{ }^{86} \text { LIVRE } 3^{m o}-\text { CHAPITRE } A^{m e}{ }^{3 \prime}
$$

${ }^{\text {es }}$ Est la refutation du precedent."

$$
\text { "LIVRE Ame-CHAPITRE } 1^{\text {er }} \text { " }
$$

${ }^{66}$ Contrient le mariage de Cinhe \mathbb{L} © tre Supreme la naissance de son ${ }^{\text {ab }}$ fils Gonech, la perte de sa tête, a la quelle Chib substitua celle d'un ${ }^{66}$ elephant et le commencement de la creation attribuée a Gonecra."

CHAFITRE $2^{\text {nd }}$.

66. Est la refutation des fables du precedent, ${ }^{99_{i}}$

CHAPITRE ${ }^{\text {mice, }}$

${ }^{6}$ Paria de la maniere dont Gonech filles \mathfrak{Z} mondes avec ses $\mathfrak{B}_{\text {Y y y }}$ yua.
${ }^{16}$ du $l^{\text {er }}$ il fit le Chouargam; de celui du Milieu, la Terre; du $3^{\text {me }}$ le 6s Patalam, il crea les 3 Gounalous,, , il plaça la Chotagunạm dans le ${ }^{66}$ Chouargam, le Rozo Gounam sur la Terre et le Tomo Gounam dans ${ }^{66}$ le Patalam ensuite il fait la description du Patalam quil partage en 7 ${ }^{* 6}$ parties comme il a partagé ce devant dans les livres precedents, la ${ }^{6}$ Terre en 7 Isles, il assigne le nom, la figure, et les mppurs des ${ }^{66}$ habitans de chacune de ces parties-ce chapitre finit par deux opinions 66 sur la nature de l'ame les uns veulent 'qu'elle soit immortelle, sans ${ }^{66}$ principe et sujetté aux Gounalous et qu'elle se reunisse et s'identifie ${ }^{66}$ avec Dieu en tems du Deluge, c'est a dire a la fin de chaque age; 66. le autres qu'elle soit mortefle et quelle ne soit par rapport a Dieu ${ }^{66}$ que ce qu'est au soleil son image quand il se peintidans l'eau."?

"ChApITRE $4^{\text {me. }}$

${ }^{66}$ Est la refutation du precedent. Zomeni auteur du vrai Chama "s Védam combat comme faux le systeme qui fait l'ame une emanation " de Dieu qui va se reunir a Dieu a la "fin de chaque age; systeme "qu' Onguira, auteur de vrai Odorbo Bédo, paroit adopter comme on ${ }^{66}$ le peut voir au lieu."

66 N. Preuve evidente que le vra Chuma Védam et le ṿai Odorbana "Védam ne sont pas sortis de la meme main et que le Brame qui les a .66 communiqués n'enrest pas l'auteur."

[^1]```
" LIVRE 5me, CHAMITRE I"."
```

${ }^{6}$ Trarte de la Creation par la Deesse Brmate et des 3 Gounalous, ${ }^{66}$ ensuite vient la refutation, et ce que c'est $\mathfrak{Z}$ Gounalous selon les ${ }^{6}$ vrais $\mathbb{V}$ édams, ce qu'ils en disent a donné occasion aux fables des faux ${ }^{6}$ Véds sur les Grounalous; le chapitre finit par enseigaer ce qu'il faut "faire pour se sauver.",

## "CMAPTRE 9 9an"

66 Developpe le systeme de Dieu autant fu'ame universelle, il parls ${ }^{66}$ aussí des 5 Elements et des 5 . Ceiux, ou des 5 Cspeces des Bouhuns "aprés la mort, dont le plus parchit estlidentiterear Jieu, ce systema "6 est bien developpéi"?

## "CHAPITRE 3 ":"

66 Revuté le precedeato ${ }^{33}$

## "CHAPITRE Ame?

66. Parre de la maniere dont Brozo crea, tout-refutation-nouvelle or idée de Dieu, de la Loi qu'il donna au $1^{\text {sf }}$ homme, de l'amour "parfait, du ciel ou de l'eternité bien heureuse, ce qu'il faut faire ${ }^{66}$ pour l'obtenir; de la- nature de Dienetz de l'ame, le tout tiré du ${ }^{\text {sc }}$ vrai Wédam:"

The following is a list of the manuscripts. and a sketch of their contents. I have for the sake of easy reference numbered them as chance brought them to notice during the examination, but the originals are not so distinguished.

## No. 1

A copv of the Esour Fédam in fernch only, probably the original whence the transcript sent to France was made, as the original tille of the works "Jozowr Béd," which appears at the head of the first page has feene crossed witha pen and the werds "s Foown Veduma,? as it stands in the, printed books, written above itor The former is thomode in which the Sanscrit namewould be wrillen and pronounced in the dialect of Rengal, and is in conformity with the grthography of the rest of the work : the substituted title approaches the pronunciation of the smabitents of the
 Wédam. The contents of this manescript appear to be exacly the same as the printed werk? as, I had, not, however, an opportunity of perusing, the whole of the latter, I can only speak decidedly of the former part which is the same as the manascrint. It consists wholly of $a^{\text {a }}$ colloquy between Choumonto (Sumnenta) and Brach (Vyása) and is divided into six, books, of which the 1st contains six chapters, the 2 d , $\mathcal{F d}$, Gth and then six, and the the and 5 th five each.

## No. 2:".

This manascript is a quarto volume bound in black leather: , contains that part. of the " Zozochi Kormo Zedo," which treats on sthe Sundhyc, \&̌. the whole of the Ezour :Védam, as contained in the preceding , manuscript, and the cupplement of the Noaru Wedam. All ins:

[^2]Frenchonly without the Sanscrit.-It is a fair copy of the French part of some of the manuscripts hereafter mentioned.

## No. 3.

A singex section quarto, entitled in French: "La Chaka du RiF et de "Ezour Védam," in Sanscrit and French. Many passages are une translated, a corresponding blank being left in the French page. "Rik Béder Chaka" is the Sanscrit title. It consists of dialogues between ${ }^{6}$ Poipolado," as the teacher, and "Narodo," as the disciple. The subject of the first is the origin of evil. Narodo at the commencement says: 66 Vous avez dit en parlant de la creation que Dieu crea d'abord un " homme qui devait donner naissance au reste du genre humain, ce ${ }^{66}$ premier homme n'estant qu'un, il n'avait par consequence qu'une figure "s d'ou vient donc que ceux qui sont nés de lui sont de differentes figures ${ }^{66}$ d'ou vient que les uns sont vertueux les autres pecheurs, voila que je ne ${ }^{66}$ puis comprendre cette dificulté ne se trouve point dans le sisteme qui


This work is divided into four dialogues, each consisting of two chapters: in the former Narodo, who may be considered either as the Indian Sishya, or the Christian Neophyte, states the point of doctrine or the religious rite to be described, which in the latter, Porpolado, the Indian Guru, or Christian priest, confutes. The abstracts at the end of each second chapter will shew the subject of each dialogue:-the first is ${ }^{66}$ iti risi dokino chake kormo prodonnio baronon, proton oullacho,"
(iti richi dacshina śácé carma pradanya váranam prathama ullása*) rerio dered in Frencle, "du rik chaka refutation du sentiment qui fait des œourres "le principe de tout le bien et de tout le mal que nous eprouverons." 2d Dialogue; "iti risi pottimo chake adiatniko zogue kuondonon 2 oullacho," (iti richi paśchima sácé adyátmicayogè chandanam ullása), ${ }^{66} \mathrm{du}$ risí ${ }^{66}$ chaka refutation de la maniere proposé dans le chapitre precedent "t pour parvenir par le moyen de la meditation a l'etre purenent spirituel. ${ }^{\text {"? }}$ 3d Dialogue: "iti risi autaro chake boichichiko serexte baronem 3 "oullacho," (iti richi uttara sảcế vaiiséshaca śrishti varanam 3 ullása) "du risi chaka refutation de la prokrite et de la creation qu'on lui "attribue." 4th Dialogue: "6 iti risi purbo chake kalponiko diano baro" nem 4 oullacho," (iti richi púrva sácé calpanica-dhyána varanam 4 ule lása.). The substance of this chapter is not stated in the French part, the Sanscrit means the refutation of the practice of meditation, proceeding from human invention, not divine authority.

The "Zozer Béder Chake," like the Ezour Wédan, consists of colloquies between Choumonto as teacher and Bach as disciple, (See No. 1), the work consists of four parts, called bistaro, (vistara), which literally means a collection of words and may be rendered a division, chapter, or as in the French, a dialogue; the first relates to the Such'àpta Sád hana, the means of obtaining happiness by the worship of various objects con*

[^3]sidered sacred, such as the Sálagráman, \&e. the second to the worship of Ganésa, considered as the Supreme Being; the third relates to the notion that brutes possess knowledge ( ${ }^{66}$ connoissance") and are capable of virtue and vice like human beingz, and to other points, which the author supposes to be connected with the Hindre doctrine of the transw. migration of souls; and the fourth the mythological account of the several Manus and Manwantaras. Like the former, each dialogue is dividedinto. two parts, containing the statement of the dogana and the refistation.

This manuscript contains, also, the title "chamo Béder Chatco," but it is followed by one verse only; six blank leaves being left for this Chakay. which seems never to have been written.

The hand writing of this manuscript differs from that in which the Ezour Védam is written, but agrees with that of the Sáma Védam and of all the others in which the Sanscrit and Frencle are found together. The Sanscrit part of all these manuscripts contains many alterations and variations of reading in the same hand, either inserted ia, the margin on interlined; these sometines correck, sometimes alter the sense and are such as an author only would make to an original work: A single ex= ample of this will perhaps be sufficient:-a line in the "Chamo Bédo," is thus written in the text-s6 pizoucho. kolochon, hoktua, bicho bandon ${ }^{66}$ zotipsoti" (piyúsha calasha tyectwà visha b, hánd́am yedi'psati) and an asterisk over " ${ }^{66}$ pizoucho," refers to the word " omrito," which has the same meaning, in the margin, indicating that the author intended the line to be read "omrito koloshon," \&ic, and this substitution agrees with the

French, which is-" qui rejeterait un vase plain d'amrouton pour ailes ${ }^{6}$ s'ennivre de venain."

INo. 4.
A sincize section quarto, ratier less than the precedings, entitled ©s Odorbo Béder Chaka" in Sanscrit and Fifeneh:-it consists of four diaz logues between "Otry" (Atri) and "Ongrrs" (Angiras) on the several subjects stated in the abstracts, appended to each and copied below. The translation of this work thus commencest : ${ }^{66}$ Atris J'ay entendu de 65. votre bouche E'Otborbé Védon je voudrais bien exicore apprende de ${ }^{66}$ vous quelque:expedient facile poun detruire et effucer les péches, J'en ${ }^{66}$ appris un dans ce gout dans le temps. que je demearais dans le bonguo ${ }^{66}$ dechan je vous en ferai partsi vous me promettez de ne vous mettre en66 colere." The words here underlined, occur again at the conclusion of the next speech of Arri; when the following marginal note is referred to, ${ }^{66}$ il est a l'est du Benguale; this seems to corroborate the notion that these works were composed in Rengal. -The tites of the several dialogues. in the French part are ${ }^{66}$ de l'odorbo chaka refutation du ${ }^{66}$ geure de penitence proposée dans le chapitre precedent,"? The penance here alluded to, should rather be called an expiation, as it is the, práyaschittam, prescribed in the Dherma-Śasticam, for the slaughter of $a$ cow, manslaughter, \&c. "De l'ordorbo chaka refutation de la meditation, "qui a pour objet et qui se termine au pronobo:"-" de l'odorbo "chacko refutation du genre de penitence appellée oto:"-" de l'odorbo ${ }^{\text {sc }}$ chako refutation du: rentiment qui soutient que $c^{\prime}$ 'est la volonté qui est. "s puriné et du genre de penitence proposée pour cela,"-At the end of..
the manuscript, this remiark is found: "ce livre et entre les mains de tous ${ }^{66}$ les Pouroitudu* c'est leur rituel.,"

## No. 5.

The "Chama Védan," noticed at the commencement of this paper, is on two sections foolscap and is endorsed "Chama Védam, I ${ }^{\text {ex }}$ cajer" (Cahier). Besides this, there are other portions of this Héda, indorsed severally. "Du Chama Védon, $3^{\text {me }}$ cajer" in one section:-" premier cayer de la supplement du Chama Wédam" (in Sarscrit, "Chamo Béder ${ }^{\text {cr }}$ Oupo Béd") in one section: " $3^{\text {me }} 4^{\text {me }}$ et $5^{\text {me }}$ cajer de supplement du Chamo Védam" in four sections. The frst of these is in Erench only, the others in Frenck and Sanscric. The first consists of dialogues be tween Zomeni and Nararon, respecting the pancleangon and the astrological notions of the Hindus, which it professes to refute. The several sections of the second, also, consist of dialogues between the same persons, but with a change of character, for here Naraion is made the teacher and Rominni the disciple. The translation of that indorsed " premier cajer," commences thus: "Zoinieni enchanté de la beauté du "Védam qu'il venait d'entendre et charmé tout a la fois de verités quily ${ }^{66}$ sont continées y prit gout et dans l'empressement d'en apprendre ${ }^{66}$ d'avantage s'adresse de nouveau a Narafon et lui dit continuez ${ }^{66}$ seigneur a m'instruire de la nature du premier etre et a me developer

[^4]${ }^{66}$ ses grandeurs." The general subject is explained by this extract. The third section is the same in form as the preceding:-the Sanscrit abstract of the first chapter of that indorsed " $3^{\text {ms }}$ Cajer," is "iti B6 Chomo Oupa Béde adia, proknite Durgá abotaro kotono pollabon" (iti Sáma Upa Védé ádya Pracrǐti Durgá avatára cat hana pallavam), which may be rendered, the section of the Sama Upa Védam, containing the ac. count of the Avatáams of the goddess Durgá, considered as primaval nature; the whole relates to the several Pracritis and Avatarams, detailed by "Zoimenl," and refuted by "Naraion;" the abstract of the last chapter ends with a speech of Naraion's, in answer to an account given by Zoimeni, of the four-faced Brahmá, of which the following is the commencement: "J'ay entenlu tout ce que tu. viens de dire au sujet de "Bramma aquatre visages, tout cela est une pure fiction, un pure mensonge "s ecoute moi je vay t'en covaincres?-and it concludes by denying* the divinity of Brahmá, and osserting him to have been a man in all respects resembling other human beings.

Connected with the last mentioned manuscripts is a single section, containing detached passages, in French and Sanscrit, with many alterations and corrections: it appears to consist of original notes to facilitate the composition of the several parts of these works.

[^5]No. 6.
The next manuscript to be noticed is one apparently older than any yet mentioned, though written in the same hand: it is on foolscap, bound in parchment and is much stained and worm-eaten: there is no general title, but the first leaf of the Frencti is headed, "Du Sandia," and the abstract after one of the books mentioned is "De Zozochi Kormo Béda, des actions. ${ }^{\text {"6 }}$ propres des Brames, refutation du sandiá de midi." - It professes, there. fore, to be the Carmacandam of the Yejur Wéda, containing e refuta. tion of the ceremonies observed in performing the Sand,hya at noomo. This work contains an account of at the Brahminical ceremonies, as prescribed in the Smrutis and what the author calls, the "ss Refutation," of each; the interlocutors are, as in' the other Ezour Fédam? "Bach, ${ }^{66}$. who gives the detail of the several ceremonies, and "Choumonros" who refutes them. - Each book or chapter, as in most of the other manuscripts, is regularly divided into two parts, as here indicated; the account of the ceremonies and the refutation of them, The following is an extract from the $33^{\text {th }}$ book: " $33 \mathbb{L i v r e , ~ d u ~} \mathbb{Z}$ zochi Kormo Bédo de la maniere de ${ }^{36}$ donner la vie aux idoles etdeles animer ${ }_{9}$ ?' being the commencement of: the second part or refutation. ${ }^{56} \mathrm{C}$. Pu viens de me faire part des ${ }^{66}$ grandes ceremonies quisert a animer un statue et a lui donner la vieg ${ }^{66}$ tua dit d'abord que les Choutpes ne peuvent poine faire cette ceremonie. ${ }^{68}$ et quils doivent appeller un Brame pour la faire en leurs noms. Dieu ss a crée les quatres castes pour pratiquer la vertu si c'est donc un act. ${ }^{66}$ du vertu de faire pareille chose pour quoi en sont ils exclus?" The last books, 66.42 livre;" of this work ends thus: "Du Rozochi Kormo
"Bédo refutation de ce qui a esté dit au sujet des eprenves"-_" iti or Zör. Kor. Béd. noro krite porikia barono bibeko- 42 livre,"


No. 7
The manuscript next to be noticed is in large quarto or small follos, bound in parchment:-it is written in the same hand as the rest, but farer and has fever corrections:-it is les damaged and apparently not so old as the one last noticed-On the back of the first leaf, the title is thus written:-"s-per Liv: Rik VEdam," *and the translation is headed ${ }^{6}$ Rrike Béder Oupo Béd. ${ }^{9 \%}$ "This manuscripe which is probably the largest of the whole, though it does not greatiy exceed some of the others, contains eight sections of nire sheets each, or, 288 pages each page contains about $5 \mathcal{G}$ lines of sixteen syllables each; being the half stanza of the: Anushturp or Ślued Vrittam, and, consequently, the whole work consists of 13, 123 lines or 3,061-stanzas. At the end of this manuscript are two dates on arslip of paper, on which the concluda. ing lines of the transtation are written, oire is "6. Année 1732," the other "Année 1751 ." This work professes to be an UpaVéda of the Rìg Véda, it commences as follows: "Narado n'etant entierement point satisfait " de ce qu'il venait d'entendre au sujet de la creation chercha a proposep os de nouneau ses doules a Poipolado et lui dita: N. J'ay entendos seig-

[^6]${ }^{6 \prime}$ neur ce que vous venez de me dire au sujet de la creation mais je ree "s suis point pleinement satisfait; ayez la bonte d'entendre a votre tour "ce que j'en say moi messme et ce que j'en ay entendu dire-je viens ${ }^{\text {sf }}$ soumettre le tout a votre examen-je trouvray dans vos responses de ${ }^{36}$ quoy achever de dissiper mes erreurs."-The abstract of the first chapier is: 6 Du Rif Opo Bédo du sisteme qui donne au monde la ${ }^{\text {os }}$ figure d'une fleur et des grandeurs de la deeṣe 'Cárá qui habite sur la ${ }^{66} 1^{\text {ere }}$ fueille a l'esto" 'This chapter commences by stating, that os Durga l'etre Supreme, l'etre eternal, a pris sous le nom de Tárá une ${ }^{68}$ figure humain et paroit soubs la Ggure de une femme pourque les 6t hommes puissent plus aisement fixer sur elle leurs imaginations et leurs ${ }^{66}$ cocurs, elle qui crée quị conserve et qui detruit tout chest elle aussi - ${ }^{6}$ qui soubs differents noms exerce la mesme puissance dans tous les " autres differentes pais. Le ministre qu'elle l'est choiseé pour cammu${ }^{66}$ niquer aux hommes ses ordres et pour conserver tout ce qu'elle a creé ${ }^{66}$ est une oye ("Oncho," Hamsa), blanche d"une grandeur extraondi©6 naire qui la transporte d'un lieu a un autre avec la meme rapidité ${ }^{36}$ que le vent. Le principale occupation de cette oye est de celelirer ${ }^{66}$ les grandeurs de la deesse et de dire incessament-Deepe qui avez os domé l'etre a Bramma, a Roudro, a Indro, et qui avez creé toutes ${ }^{\text {so }}$ choses pour quelle fin m'avez vous creé moy mesme dignez me done ${ }^{65}$ ner vos ordes et m'apprendre ma destinée, ${ }^{99}$ Then the work proceeds in a dialogue between the goddess and " $\mathrm{I}^{\prime} \mathrm{O}_{\mathrm{y}} \mathrm{e}_{3}{ }^{39 *}$ in which the princi-

[^7]pal pat is bome by the former. She instructs her pupil in every thing relating to the arrangement of the universe which she thus describes: ${ }^{66}$ La fleur qui compose le monde repondit la deesse est elle mesme com= ${ }^{6 s}$ posé de dix feuilles je dois me metamorphoser sur chacune des ces 66. Feulles etyíparoitre soubs differents figures tw auras la miesme sort et $6_{6}$ tuinstruifas leshommes des diferent vertus quils odoivent pratiquer et
 account of the firstleaf of the flower, mhich coistitutesides furst part of the



 of the goddess being described and refuted in a separate chapter.-The title of the second division of this workis the 66 Rik Cormo Bédo:?9 it is nearly the same in form and substance as the "Zozoche Kormo Bédo;" each chapter is divided, as in this work intor atatement of ather celem monses and ameftation of them; it freats, first, ons the seteral modes of
 of daily cermonies (sodes actions jounalierest? ) the morningy nopn ane


[^8]evening, sandihya; the festivals observed in the several months of the year, \&c.'\&c.

No. 8.
In five sections placed under the same cover as the foregoing, but not belonging to it, being written less closely and on older paper, is found another part of the ${ }^{66}$ Zozochi Kormo Bédo:" -it is defective at the commencement and ends, with the fifth book; "5 Live." The abstract at the end of the first chapter it contains is- "Da Zozocion Kormo "Bédo, refutation de ce que se pratique danis le mois achino et en particu${ }^{66}$ lier du sacrifice de Durguse". It treats of the various sacrifices and offerings to Durgág Cálíg \&c, \&c.

Having afforded a general view of the contents of these manuscripts, I shall add a few conjectures, very imperfect certainly, as to their origin, and some remarks on the mode in which the forgery has been executed.There prevails among the more respectable native Christians of Pondia cherry an opinion, on what authority founded I know not, that these books were written by Robertus de Nobilibus:* this personage, of the Society of Jesus, and the founder of the Madura mission, Tong the most flourishing of any that ever existed in India, is well known both to

[^9]Hindus and Christians, under the Sanscrit vite of TATwa-EÓDHA SWAM!, as the author of many excellent works in Tamil, on polemical theology. In one of these, the Atma-ninaya-vivecam, he combats the opinions of the various Indian sects on the nature of the soul, and exposes the fables with which the Puranas abound, relative to the state of future existence, and in an other, Puncrjenma Acshépa, he confutes the doctrine of the metempsychosis. Both these works, in style and substance greatly resemble the controversial part of the $P_{s e u d o-V e ́ d a s ; ~ b u t ~ t h e s e ~ a r e ~ o p e n ~}^{\text {se }}$ attacks on what the author considered false doctrines and superstitions and no attempt is made to veil their manifest tendency, or to insinuate the tenets they maintain, under a borrowed name or in an ambiguous form. The style adopted by Robertus de Nobllibus is remarkable for a profuse intermixture of Sanscrit terins; these to express doctrinal notions, ${ }^{*}$ and abstract ideas, he compounds and recompounds with a facility of invention, that indicates an intimate knowledge of the language whence they are derived, and there can be no doubt, therefore, that he was fully qualifed to be the author of those writings. If this should be the fact, considering the high character he bears among all acquainted with his name and the nature of his known works, I am inclined to attribute to him the composition only, not the forgery, of the Pseudo-Védas.t It

[^10]is not improbable that the substance of them as they now exist is from his pen, and that they consisted originally, like his works in Tamil, of detached treatises on various controversial points, and that some other hand has since arranged them in their present form, imposed on them a false title, transcribed them into the Roman character and translated them into Frencid. To effect this would have been easy and would have required comparatively but little knowledge of the Sanscrit: the dissertations were probably divided by their author, as they now stand, into a statement of the poinis in controversy and a refutation of them; all that was necessary, therefore, was to prefix the prosaic introductions and to add the final abstracts containing the tille given them, and they received at once the form they now bear. This supposition appears sufficient to, aecount, for every appearance which they exhibit it explains why the Sanscrit does not appear in its appropriate character and orthography, in which it is difficult to suppose it was not orginally writien by the author, and it also, explains (what I shall proceed to demonstrate), why the trandation is not alvays a fathful yersion of the original.

The Sauscrit scholat will readily perceive, that the whole of the + renc 8 translation of the extract from the $6 \mathrm{E}^{\mathrm{C}} \mathrm{Chno} \mathrm{V}^{\prime} \mathrm{do}_{3}$, is l oose and defective, and this will, also, appear by a comparison of it with the Englist translation. In the sth line of the invocation one of the epithets applied to the deity 66 OFiorum (Acsharam)? is readered inthe renerh 66 Une ${ }^{66}$ syllabie compose son nom, ${ }^{35}$ a version for which there is no foundation whatever: fcsharatis trte, as a noun substantive me feminno gender, signifes a letter, but Acsharawian, as a noun of quality, and an epithet applied to the deity means, the ndestructible, the anfitute. nye testof the
version of this extract to the end of the invocation, bears but little resemblance to the original, as a comparison of the two last lines with the translation will sufficiently demonstrate.

> Parésa paramánanda śararíágata vatsala.
> O high Lord! O preeminently happy, O merciful to those taking refuge with thee!
> of Il est heureux et heureux par lui mesme, il est enfin le comble de ${ }^{66}$ toutes perfections et au dessus de toutes nos connoissances." ${ }^{9}$

## Trathi mám caruná sindiwo muctidáya namastuté.

Deliver me, $O$ sea of mercy! for the gake of beatitude reverence to thee ${ }^{6.6} \mathbb{C}^{9} \mathrm{est}$ au dieu qui a pour ceux quil'envoquent la tendresse d'un 66 vray pere que j'offre mes adorations et mes hommages. ${ }^{\text {"9 }}$.

Though the turn given to the last may be conformable to Frencte taste, it is scarcely possible that the translation of these verses could have proceeded from the pen of the author of the original.-The concluding sentence of this part of the translation ${ }^{6}$ Et c'est pay la que je commence "S le livre" "sc, is entirely wanting in the Sanscrit.

This comparison, however, though the selection of the passage on which it is founded was entirely fortuitous, certainly affords a less favorable idea of the manner in which the translation is executed, than in general it deserves: I subjoin, therefore, an extract from the "Chamo
"Oupa Dédo," correcting the orthography of the Sanscrit and auding an intenlined literal translation in Eaglish.

Brahmana iswara nityam n'ávatárascha nischayah.
Brammá is not the eternal God and certainly not an incarnation of him.

Na srishli tasya jagatah cévalan nararúpacah.
Nor is he the creator of the world, he is merely a human being.

Yathú twam cha tathá saki viśésha násti cinchana.
And as thou art, so is he, there is no difference whatsoever.

Snishtin násampálanartu criyativ, sa swayam-prabhuh.
Creation, destruction and preservation, these caused HE, the selfruling Lord.

Tasy'ávatára nästy éva gunaidisparsýanam tut hà.
To him there is no incarnation, nor the contact of quality and the rest.

Na viváham striyals swargam cadáchit api vidycintş.
Nor are marriage, women or a peculiar heaven in any way known! to him.

[^11]
## T'asmát bleräntim paretyajya Brahma árádhanam curu.

 Therefore, quitting delusion, do reverence to the Supreme> Anyet sévam swapna tulyann catham tasmin ratincharet. All the rest is a dream, why place affection on it?

"Le Bramáa a quartres visages n'ést certainement pás le premier " etre, il n'en est point une incarnation, ce n'est point lui qui a creé ${ }^{6}$ tout ce que nous voyons; il n'est qu'un homme, un homme comme toy "et entre lui et toy il ne a nulle difference. C'est le premier etre qui ${ }^{66}$ seul a creé toutes choses c'est lai qui les conserve et les detruit a son ${ }^{6}$ gre mais cet estre rre $\mathrm{s}^{7}$ est point encarné connue $i \mathrm{a}$ le dis; il ne $\mathrm{s}^{\text {sest }}$ ""point un' aux gounalou; il n'a jamaís eu de commerce avec les femmes, ${ }^{6 s} c^{\prime}$ 'est* une impieté de dire et de le penser quittez donc tout ce qui ${ }^{\text {of }}$ n'est que prestige et mensonge pour ne t'attacher que lui." $\uparrow$

In the former part of this version the sense of the orginal is preserved with sufficient exactitude, but that of the three last lines is greatly obscured. Comparing this with the former extract, a generally correct notion may be formed of the mode in which the whole translation is executed, and, notwithstanding the identity I have noticed between the

[^12]hand writing, both of the Sanscrit and French, throughout the manus scripts, for those may be copies only, I think the judgement which will be formed will lead to the conclusion against the probability of the author and translator of these works having been the same person, and though the establishment of this point, will not prove the truth of the conjecture I have ventured to offer on their origin, it will corroborate any circum: stances which may be hereafter discovered tending to establish it.

The conclusion would be natural, that a person, who had acquired such an extensive command of the Sanscrit language as to be qualified to compose these works, and such a knowledge of the ceremonial observances and religious tenets of the Hindus, as to enable him to compile the materials of which they are formed, would have made himself acquainted, also, with the form and substance of the writings he was about to imitate, as essentially necessary to the success of his forgery: on the same principle, indeed, however different the motive, that a common swindler imitates even to the minutest stroke, the signature of the person he intends to defraud. And, thus concluding it might cero fainly be expected that these Jesuitical forgeries were nearly the same as the real Tédas; that they were the same in general arrangement, style of composition, as verse or prose, and in matter, as far as compatible with the intentions of the author: in none of these, however, do they. bear to the writings, the title of which they assume, the most distant resemblance.

Tres contents of the several Védas and their general character are welli explained by Mr. Colrbrouke, in his Dissertation "o on the Védas
"cor Sacred Writings of the Hindus," in the eighth volume of the Asixe tic Researches, and the veil in which ignorance had shrouded these writings has, therefore, been removed. More recenily, iranslations of parte of them have been mades* but much remains still to be knowna and the following observations on their arrangements substance, and style of composition, if not possessing the recommendation of complete novelty, may perhaps be found to afford some addition to the knowledge we possess on a subject, which, untill lately, was involved in impenetrable obscurity: they are here introduced to prove the assertion made in the preceding paragraph and to shew that in these particulars, the Pseridow Wédas differ, toto colo, from the genuine Védas.

Ths four Védas, including the Atharvana under that title, are each commonly divided into two parts: the Purvo-candam, the anterior division, also called Carma=cándam, the division on worksi and the Uttarowcándam, the posterior division, also, called the Juyána or Brahna-cálidam, the division on knowledge or on God. The former relates to religiozs works, appoints sacrifices and other ceremonies, and prescribes the mode in which they are to be performed. The latter relates to spiritual knowledge, teaches the being and nature of the god head, of the soul, \&c. The substance of each of these great divisions is lechnically arranged under three heads: First, Widhi; Precepts, teaching in the Purva-candam the fruit to be expected from every rite, as

[^13]Suargancámak agnistróman curyát, He who desives to obrain the heco ven of the inferior deities, let tim perform the sacrifice, called Agnisha tóma, and in the Uttaracándane, the merit obtainable through meditation, by which the devolee approximates to a true knowledge of Goo, the nature of the soul, \&c. as Mócsha=cámah átmánam jáníyát, He who desires eternal beatitude must understand the nature of spirit. Secondly, Mantram; in the Purva*candan, this term includes Prayers and Hymns, addressed to various deities and appointed to be used at sacrifces and other religious rites, as that found both in the Ric and Yejur Véda, and used in the performance of the Homam, or daily oblation of fire, beginning Agni viswabluc, \&c. Fire who devowrest the world, \&c. In the Uttara-candam ir is applied both to Hymns and Solemn Addresses to the Supreme Being and Didactic Explanations of his nature and altributes, as that part of the Taitiviy'opanishat, beginning Bralma vijnyanam cuantam satyam, \&c. The Supreme is essential intelligence, infinity, truth, \&cc. Thirdly, Brähna-nam; * this term, as applied to the Púrva-cañdam, embraces two distinct things:-it is given to Precepts declaring the mode in which religious rites are to be performed, thus: Yedyanud, hrit agn'ávastamiyát yejnyá násyet, If the fire be takess up when the sun has set, the sacrifice perishes; or it is synonymous with the Itihása or narratives found in this portion of the Védam; in the Uttaracándam, it is also synonymous with the Etifasa and is applied to precepts teaching how a knowledge of the Supreme Being, the nature of the soul, \&c. may be obtained, of which the following sentences

[^14] Inasmuch as he admites a difference fbetween univeisal and individual spirit) insomuch is he ignorant. N'ächáyam anspasadya Brabmas véda. The Suproma cannot be known withowt obtaining a teacher.

IT follows from what has been said, that the whole Véda treats on two subjects only, religion and devotion: by religion I intend all that relates to external worship; by devotion all that relates to internal conviction. The ideas conveyed by the words I have thus rendered, Carmam and Jnyanam, correspond nearly with our theological terms: works and faith; the first literally means work, act, and deed; the second krow. ledge; but without knowledge true faith cannot exist, and from faith devotion immediately proceeds. The substance of the Wéda, as divided into two portions* treating respectively on these subjects, may thus be recapitulated: in the anterior portion, on religion, are contained precepts teaching the fruit obtainable from all religious rites, the prayers to be addressed to the various deilies $\uparrow$ presiding over them, and precepts teaching the mode in which they are to be performed:-in the posterior portion, on devotion, are contained precepts teaching the merit obtainw able by devolion, addresses direct to the deity and explanations of his nature and attributes, and precepts, teaching how a knowledge of him

[^15]is to be obtained:-throughout both portions are scattered narratives of greater or less length, in the former generally, describing the origin of the rite, and in the latter often illustrating the power* of devotion by the example of some renowned devotee.

Thas slight indication of the contents of the real Védas must manifest. that in substance the Pseudoo $\mathbb{V}$ édas bear in general no resemblance so them. The address ascribed to Jamuni by which the "Chamo-Vedos opens is indeed nearly similar to a Mantram of the Uuara-caindam and many if not all the epithets therein applied to the Supreme Being are to be found both in the Fédas and Furánas, from the latter of which they were borrowed. With the commencement, however, all resemo blance ends; the contents of this Peerdo-Véda, as detailed in the abo stracts of the several chapters, cannot be referred to any portion of the real Wéda; they are neither Vidhi, Mantram, nor Brailumanam, and belong not either to the Púrva or Uttara-cáredanno

Tenc distinctions chiefly to be noticed in the arrongement of the Fédas are those called Sambitá and Sáchai. Trhese terms, as usually applied, are nearly synonymous, both meaning an edition of the whole or a certain portion of one of the Wedas: thus that edition of the Crushna Yejush, called Taitiriya may be denominated Taitiriyá-Sam.

[^16]litaf or Taibiviya-Sácihi. But in fact, those terms are in their origin very difierent and properly describe very different things.

Tue term Sáchio, literally means a branch, and is applied to the several branches of the same original, wherein, as in our editions of bouke, any new matter is introduced; for example the Ad,hénam, or riles observed in placing the sacrificial fires previonsly to the performance
 and not in the Taitiríya-Síc hú, the former containing besides many particulars in which the latter is deficient. Or a Sáchá, is a separate tract relating to some particular rite; thus in the Sáchás of this Véda, the Aswaméduas Évichú contains the ceremonies to be used at a sacrifice of a horse; the Cat $k a=$ Śáchá, those called Ciayanam, performed, when the hearths are prepared for the sacrificial fires by paving them with limestoncs; and the Aranyci-Śáchā, those prescribed for the Aruna. cétucan, wherein smatl eaxthen pots are used instead of limemstones; it contains, aloo, the rales for teaching the Véla and to it is appended all the Uparishats, appertaining to the Cirohinio Yejusing which collectively constitute the Ultara-cúsidam of this $\mathbb{F e} d a$.

Sanntra the past pariciple derived from Sand há the dhbeing here changed hy speciat rute for $h$ before the formative affx Ctapratyeyam, signifies liembly conjuibel, and is applied technically to the arrangement of the taxt of the Fold, into short sentences, regulated, when the style is verse, by the species of verse, nud when prose, by the subject.-Now whether the same portion of the Féda has been differently arranged by
diferent persons, or whether it is subject to one unvarying mode of division alone, those who originally arranged it have each given their names to the result of their labors: thus, as the first Síchá of the Cfrshía-Yejush was arranged by the Taitiryate or disciples of Vaisampáyanah, it is called the Taitiriyá-Samhitás and of the five editions or tracts, composing the Véda, it is the only one usually so called, the others being more appropriately denominated s'áchá only, not being distinguished from each other by any peculiar arrangement of the text. From what has been said, it appears, that the term Sácha, regards the substance of the writing to which it is applied, and Samhita, the arrangement of the text.

Besmes the term Samhitá, as applied to the arrangement of the text into distinct sentences, there are other minor divisions, the most usual of which are Padam, the simple division of the text into words in the order in which they stand, and Cramam, the division and rewcombination of them according to the sense.-Again, the text is distributed into divisions laxger than the Eamhitú, as Chuñlla, Súcte and Arawtéca, sections, of greater or less fength, consisting of many Samhitás; Ad, hyaya, Prása, Prapatáca, containing many sections: Mańdala, Asftaca, or Candax, divisions or booles composed of a certan number of chapters. "These cinfistons are not conmon to all the Védas; some are confined to one only, as the Chanda to the Siucla-Yejush, and some are common to two or more, es Súctam to the Rich, and Litharvana and Aldyáya to all.

WITH the arrangement of the real Védaas here indicated, the PseudoTédas have little correspondence. The manuscript $\mathrm{N}_{\mathrm{G}} \mathrm{G}$ 。 6 , is entitled "Zozochi Kormo Bedo," the Carma-Véda of the Yejush; this is the only allusion to the grand division of the Véda into two parts, and this is not correct, for the first part, is never called the Carma-EヒE $d a$, but the Carma Cáridu of the Védc. The titles of the MSS. No. 5 and No. 7, are equally erroneous; one is called the "Cham; Owfa Bedo" and the " Reife Oupa Bedo," confounding the Véde purpar, with the $A$ bz is or dependant sciences necessary for the study of the $\mathbb{V} \cdot d a$, called also, though improe perty, Upavédas,* as grammar, astronomy, \&cc. The term Sunhitá is no where used; S'áchá is found in MSS. No. 3 and No. 4, which are called the $\$$ fichar of the Rich, \&rc. and this word is also used to designate the several dialogues they, contain, the foar frrst in the former, for instance, being called the East, West, North, and South Sáchá of the Rim Jédam. To this use of the word, the authors of the forgery have been led by its literal meaniog. that it is never so applied in the real Véda, has been already shewn by the explanation given of its proper siguification. - The other divisions found in this writing, such as Ulááa and Vistára in No. 3, Pallavan in No. 5, and Vivéce in No. 6 and 7. are utterly unknown to the Véda.

The form of these Pseudoillédas is constantly that of a diafogrue between a teacher and his pupil: now though instances of this occur,

[^17]Woth in the Manirams,* and Upanishats, they are far from frequent and altogether constitute a very small portion of either of the Védas; this form is however, of much more frequent occurrence in the Puránams; the Bhágavat Gitá, it is well known is, a dialogue behween Croshńa and Arsuna; the whole of the Bhárata indeed is similarly arranged; so, elso, is the Ping gavatam. In this, therefore, as in ather cireanstances, as will be shown, the Jesuits, unacquainted with the real arrangement of the Fédas, have fullowed the Paranams to which lhey had easier access.-The interlocutors in these dialogues, are for the Yejur Téda, Sumanta as teacher, Tyása as disciple; for the Rig Védu, $\uparrow$ Pole palado as teacher, Nárada as disciple; for the Alíharvana Véda, Atra as teacher, Angiras as disciple, and for the Sáma Véda, Jaimini and Naráyana, with a change of character, first one and then the other being teacher and disciple. In selecting these characters, a litle knowo ledge is strangely intermixerl with abundance of error; to make Vyása, who compiled and arranged :he whole Véda, the disciple of Sunanta, of whom he was in fact the precephor is absurd; this awkward introduce tion of the chief of Indian sare, arizes professed!y from the composition of the Puranas being, also, attributed to him, the l'seudo-Vojur Véda being principally devoted to the refutation of the fables contained in those works. The Yujur Véda, as is well known is of two descriptions, the Crtsho or black yejush, originally fanght by Vaisampäzana, and

[^18]the Sucla or white Yejush revealed to Yájnyavalcya by Súrya: these distinctions are overlooked by the Jesuits.s es assisst"?

Nárada; the disciple in the Péudo-Rùg Véda, is actually introducea in this character in the Upanistats of the real Véda, but there is great difficulty in identifying the other personage, Pollapado; the original teächer of this Véda was Paila, and the Jesuits may have added by mistake the two last syllables to his name; it is worthy of notice, how - ever, that one of the Śa hàs of the Atharvana Véda is called ParpaEADHIH, from the name of its author, which they may have supposed to be Paippaláda, though in truth, it is Pippaláda: no part of the Ruge Vélla is, however, attributed to this sage...

Varrous parts of the Hindu scriptures are atributed to various sages; among others, Angiras is an interlocutor in some of the dialogues of the Upanishats, and, though I cannot advert to any particular instance, ATrI may, also, be found in this character; neither of these, however, are stated as the teacher of the Atharvana $V e{ }^{\prime} d a$; the person who is said to have received it directly from Vý́sa is Sumantáa, as already noticed.

Wirn respect to the Sáma- $\bar{V}$ éa $a$, the forgers are more correct, Jamme NI is considered the primitive teacher of this Véda, but who is intended by Naráyana, is not so clear: they cannot mean Vishnu under that title, and $I$ know of no sage of this name mentioned in the Védas, or as being connected with them. The change of character these two personages
undergo, is remarkable, but I think it may be explaineds in fact Jammes. is considered by the Hindus as the" foundew of: what is called the Purva Mimámsicá school, who teach, that the Carman, svorls or rites, are the essential part of religion, and that the power of the: divinity is innately embadied in the words of the uncreated and cternal Védas, *hose to whom these writings owe their present form, seem to have discovered this, probably from the information of some of their native assistants, while in the act of arranging their materials, and, struck with the absurdily of attributing to this personage doctrines so opposite to those he was known to have maintained, to have deposed him from his dignity of teacher and raised to it his quondam disciple.

IN the Pseudou Védas differ entirely from the real in substance and arrangement, the difference they exhibit in style, also, is not less remarkable. The Saima-Véda is called the Metric, and the Yejush, the Prosaic* Véda, but in the latter, verse is occasionally intermixed with the prose.
 those of the other three are chaunted, and in the written copies, therefore, the accents are marked as in modern editions of Greek works, or as in the service books of choirs. The Ryg-Véda is wholly in verse and the Atharvana partly in verse and partly in prose. Three species of verse are generally used in the Véda, with which others are occasionally, but

[^19]rot frequently, intermixed. The first the Anushtubh Vr"ttam, consisting. of a stanza offour lines, each containing eight syllables, but generally written its two long lines of sixteen, resembles in this respect, the common Ślóca Vritlam, which, also, belongs to the Anuslitupi Chihandas; but, though according in outward. form, they are very different in cono struction and meire. This I shall proceed particularly to demonstrate, for in the latter species of verse, seldom, if ever used in the Védas, all the Purainas, the Blarata, Rámáyana, and other long poems, are chiefly written, and in this metre, also, as will be presently shown, the whole of the Pseulo-Védas, a few introductory passages and abstracto of chapters, which are in prose, excepted, are composed,

The possible variation of the species of verse included under the term Anushitup Ch handas, or of the combination of long and short, in a line of eight syllables, is two hundred and fifty-six; but, as every species used, must end in a long syllable, and the last of every verse is, accords ing to the rules of prosody, common, this number is virtually reduced to one hundred and twenty-eight, The Síca Writtam,* as from the frequency of its use it is especially denominated, is restricted in the respec. tive verses to certain species of the Anush'tup Chhandas. The first, which is the same in each stanza as the third verse, may take thirty-two different species, but many of these are of very unfrequent occurrence; the second, the same as the fourth verse, can take only ten. The species,

[^20]however, which most frequently docur in the first verse are those numbered, in the general scheme of the Chlkandas; from seventeen to twenty= two, and from twenty-five to thirty, inclusive, each of which end in three long preceded by one short syllable; those belonging to the second verse, are those numbered from eighty-one to eighty-four and from eighty-nine to ninety-four, inclusive, ending in a short between two long syllables, preceded by a short syllable. The rule, therefore, for the composition of the Ślóca Vrǐttam, liable to such exceptions as may be caused by the occasional appearance of the other species admissible into the first line, may thus be stated: the three first syllables of every verse are common, excepting, that a long syllable must be found either in the second or third place; the fifth syllable in each line must be short; the three last syllables of the first and third verse must be loigg; and the second and fourth must conclude with a short between two long syllables.

Tre Anushtubh Vrăttam, of the Véda, is not restricted to any species of the $C h i$ handas, but provided the iambic measure, allowing nevertheless of a very free intermixture of trochees, pyrrics and spondees, is preserved, may be used. It is necessary, however, that the iambic structure should be more carefully maintained in the second and fourth, than in the first and third lines, and in this respect the rythm of this stanza is distinguished in a very marked manner from that of the Slóca Vrittam: the whole number of species which ends in two iambics are sixteen, ranking in the general scheme of the $C h$ handas from eighty-one to ninety-six inclusive, of which four are rejected from the second line of the Slóca

Writtan on account of short syllables, occuring in the second and third places, and two, numbered eight-five and eighty, the furst consisting of a spondee followed by three iambics, and the second wholly of the latter feet, on account of the entire prevalence in them of the iambic rhythm, for which reason, they are prefersed in the Anzshtub Vruttam of the Védu, and occur, in every line more frequently than any other species.*

Or the other two species of verse, the Thishtup $\mathbb{W}$ rittam is almost peculiar to the Védam being seldom found in other works, and the Gayda= triyam is entisely so. The Trishtup stanza consists of four verses, the measure of which is dactylic, being formed by adding a long and two short syllables to any of the six species of Anushtilp Chhandas, numbered in the original scheme from one hundred and thirteen to one hundred and eighteen: other variations occasionally occur, but the rhythm of this stanza is much more limited than that of the Anmshtup or che Gayde triyam. The Gayatriyam, so called from the most holy of texts, the Gayatre, being written in this measure, is a stanza of three lines, each containing eight syliables, but is is usually divided into a long line of sixteen and a short one of eight, and should contain, therefore, twentyfour syllables, though frequently, as in the Gayatri itself, it falls short by one of this number. The rhythm of the Gayatriya does not differ from that of the Anushtub Vrïttam.

[^21]The Pseudo Védas are entirely written in the stanza called Śslócos Vriltam, each being divided into two lines of sixteen syllables, but following exactly the rule I have given for the composition of this species of verse; the following extract from the commencement of the first "Bibe\%o" of the "Rik Bedo Oupa Beclo," the French translation of which has been already given, in which the commencement of each verse is marked by a capital letter and the measure indicated by the usual prosodial marks,* will exemplify this.




 Ta





[^22]Fronir this specimen it will be seen that according to the rule laid down, the fifth place in each verse is short, end that in the three last places of the alternate verses are three long and a short between two long syllables. That this is the appropriate measure of the Puranams, Bhairatam, Bhágavatam, \&c. the following extract will prove:
The firststanzas of the Scanda Purrina in the Slóca Vrittam, immediately following the invocation.
Srīmăd ōncārăm ābhyārchā-Sēnăāām sērvădēhinnā,
Vrăjān vìlocăyāmchācrē-Pŭrō Vīndhyām dhărādhărām,
Sāmsäăŭ-tāpă sāmhārī- Rēvā vārř̆ pàrrīshcrǐtām,
Rāsūlăyãm rüsālaīs taīs-Asōcāis sōcŭhārīnām,

The first stanzas in Stúcos Vrütcom of the Bhäratam.
璍năyă vănătō $\bar{b}, h u \bar{t} t w a \bar{a}-C a ̆ d a ̄ c h u ̄ t ~ s u ́ t a ̆ ~ n a ̄ n d a ̆ n a ̄ h, ~$
T̄̄m āsrămām ănūprāptām—Nāimīs'ārānyă vāsĭnām,
Chitrā 'srātūm căt, has tātrā-părivvăvrus sămāntătāh,

[^23]Were furst stanas in Slóca Vrittcim of the Brodgavaian.

$$
\begin{aligned}
& { }^{3} \mathrm{OM}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sāttrām swâregāyă locäy } \bar{a}-\text {-Săhăsrām sămăm āsŭta, }
\end{aligned}
$$

Finally to demonstrate that the works which I have designated by the term Pseudo-Védas, deserve that name, all that is now necessary is to make a few extracts from the genuine Védas, sufficient ta shew their general style, and in what it differs from that of the Purancs and of these manuscripts. In doing this I shall, to prove that the remarks I have made on this subject are correct, state minutely the arrangement, subdivision, and style of a portion of the Védas, and that which has been selected for the purpose, and which is now before me, is the colleco tion of hymns belonging to the Rigg Védam called Pavamáram.

TEHE Mantras of the Pavamána Súctam, tor collection of hymns to the grod of the winds, are recited at the commencement of the Agnist toma, or primary sacrifice, which must be performed before any other rite of this description can be undertaken. -This collection consists of

[^24]four Adhyaya or chapters, the first containing twèntyoforr, the second thirtyothree, the third forty-one, "the fourth twentyotwo Chairdas or sections. Nearly the xhtole of the Suctam, is writen in the Gayatriga metre, Anushtup stanzas being spariigly intermixed; part of the 18th, and the whole of the three concluding Chandas of the fourth Adrayaya have Anushtup and Trishtup stanzas intermixed. Each Chanda consists more frequently of four, five or six stanzas, less frequently .of seven and eight, which number is seldom exceeded. When the measure changes from the Anushtup to the Gayatriya metre, a short verse of eight syllables, like that which with the latter closes, is interposed. The three verses of the Gáyatriya ought to be Amushtup of eight syllables, but it is a licence not unfrequently assumed to drop one, or even two syllables when compound consonants such as dra, bhya, or csha occur in the line, thus reducing the number to seven, or six syllables. These xemarls are exemplified by the following extracts:-in the original the verses are only separated by two short perpendicular lines thus (II), I have arranged them after the manner of Europecin verse that the metre may be more distinctly, shewní,

Tue first Chanda of the first Ad,hyáya of the Pavamánam, consisting wholly of Gáyatriya stanzas:

Srī Gańéśáya namak 甘:Harih 'Om, n.

Indrāyă pātüve sütãh,

Drünasădāşt hăm àsădāt,
 Pārshărād hṑ $n a ̆ g_{i} h a ̄ n a ̄ m, ~$ Āb hyārshă măhānām－Dēvanām vilimam dhāā̄， Ab，hivājam ütărsrăvah， Twăm ăch hān chărāmăsī－Tădưd ārtihām divēdưvé， Indōtroēnā āśăsā⿸⿻一丿⺝\zh19．

Tue sixteenth Chanda of the fourth chapter of the Pavamanam，con． sisting of Anushtup and Gáyatriya stanzas intermixed：

Pāvāsyă sōmăm āndăyănn－Īndrayă măd hḥ̆mãtlămāh，
 Téscătā sōmă dīntŭmāś－Cātcā vāyŭm ăsrīcshătā， Grāonātūm nōăb hīsh＇tütāh－Păvīttrām sōmă gāchchāsĭ， Dŭdihāh stōttesă̈r vīyām，
 Rūcshōh＇āvārām ānyăyām。

A comparison of these extracts with those from the Puránas and PseudoaVédas，will shew，that in the former，the proper measure， according to the rule laid down for the Anushtub．Vrittam of the Wéda，is every where preserved and that this differs essentially．from the measure of the Puranas，with which that of the Pseudo－Védas exactly corresponds； the only difference being，that the general rule for the composition of the Sloca－Vrittam is more uniformly followed in the later，than in the former．

In these observations on the style of the genuine Védas compared with． that of the Purazas and Pserdo－Fédas，If have confined myself to the
outward form, the variation in which s apparent on inspection only, even to those unacquainted with de language. A disquisition on the peculio arities of the style, which distinguish the language of the Véda from that of the Smritits and of the Puranams and heroic poems, and from the classical Sanscrit, as fnally polished by the authors of the Corvams and Notacams, would not have added to the evidenee adduced to prove the nature of the writings, of whieh I have treated in this paper, whilst it would be intelligible only to the Sanscrit scholar. It is safficient to say, without producing further proof than the authority of Sir TW. Jowes and Mr. Coembrooke, (see preface to the Institutes of Menv and Dissertations on the Religious Ceremonies and Sacred Writings of the Hindus, Vols. 7 th and 8 th of the Asiatio Researcies,) that Sinseerit of the Veda is materially different from that of all other Hindes crmpostions; that, as having a peculiar grammar, taugbt as one of the Angams, or subordinate bodies of the sacred writings, it must be considered a distinct dialect; and as such can never be confounded with the language of the Puránams, the style of which the authors of these forgeries have imitated, it must be confessed ${ }_{2}$.with wonderfel ingenuity and successo-

## Note A.

[^25]Robertus De Nobilinus, or Robspt De time about the year 1620 ; this appears from the,

7e Raciura mission, some - . astter of P. Pierre Martin,
 charge of a congregation of Christians* in Travancore he says: " Il y a plus de cinquante ans que ce " missionaire travaille avec un zéle indéatigable au salut des Mallabtres. Tl est le dernièr Jesuité, qui ${ }^{66}$ ait paru dans le Maduré avec l'habit que nous portons en Europe. Car quoiqu'il y ait plus de quatre" vingts ans, (this lefter is dated the 1st June, 1700), que le pere Robert De Nobilibus fonda cetté ${ }^{6}$ fameuse mission sur le pied qu'elle est aujourd'hui, c'est $a^{\prime}$ dire, en s'accommodant faur contomes du ${ }^{66}$ pays, soit pour l'habit, la nourriture et la demeure, soit pour les autres usages, qui ne sont point con${ }^{66}$ traires á la Foi et aux bonnesmours; cependant, les Portugais ne purent se resoudre a ne pius paroitre 6 en ces terres en habit Européen, qu' apres avoir été coavaincus par une longue experience que cette con${ }^{〔}$ duite etoit tres préjudiciabie á la religion, et á la propagation de la Foi, parlaversion et le mépris que "ces peuples ont conçû contre les Européens." $\dagger$ : His birth and family are stated in this letter in these words. "Le Pere Robert De Nobllibus illustre par sa naissance, étant proché parent du Pope Marcer
 * Pope Marcellus II. See the article Bellarmin in Bayle), mais plus illustre encore par son esprit, "par son courage, et par lè zéle des ames ảont il bruloit, fut le premier qui, au conmenceménédu siećle passé, ${ }^{66}$ miten usage le moyen dontje viens deparler," \&c. The writings of Rodertus De Noblypusia the Tamit language were it seems studied by all who entered the Mudura mission; P. Pierre Martin, speaking of certain French missionaries being seef to, thisy misson, thus mentions them. Pour + reussir dans ${ }^{66}$ une enterprise si glorieuse a dieu et si avantageuse a l'eglise, il etoit nécessaire d'envoyer quelques uns
 " coutumes et des usages de ces peuples, former des catechistes, lire et transcrire le livyes que le venerạble " Pere Robert De Nobilibus' et nos autres Peres out'composés," \&ec." The nature of these worls $I$ have stated in the text and, as there asserted, in nowe of them is any attempt made to conceal their origin or intention; no false title is assumed, but the attack is open and avowenly directed by the Christiun teacher against, the criors of. Itealhchism.-It is certain, howefer, that the' mission of Madura was founded on the principle of concealing from the natives, the country of the missionaries, and imposing them on the people as belonging to the sacred tribe of the Bratimians, ( © inomaca Bráhmanca was the title assumed) and this deception, probably, led to masy more; at least Robersus De Nobilibus is accused by Mosurna in his Ecclesiastical Mistory both of fraud and perjury in his endeavours to support his assumed character. The passage in whick he is mentioned and the note in which the charge is mate, I quote at length.
" These missionaries of the court of Rome, If sprear the fame of the Christiun religion through the ${ }^{6}$ greatest part of Asia during this century. To"begin with India; it is observable, that the ministerial ${ }^{66}$ labours of the Jesuits, Theatins, and Augustinians contribated to introduce some trace of divine truth, ${ }^{6}$ mixce, iuded, with much darkness and superstition, into those parts of that vast region, that had "Been possessed by the Portugzese before their exjulsion from thence by the "Ditch. But of all the ${ }^{6}$ missions that were established in these distant part's of the globe, none lias been more constantly and

* Page 14 vol 5. + Page 19 vol. $5 .-$ Page 3 , 0 al 5 . 1 1.

" universally applauded than that of ar" rdur, and none is said to have produced more abundant and " permanent fruit. It was undertaken'an?s exeeuted'tby Lobert De Nords,* an Italian Jesult, who ${ }^{6}$ took a very singular method of renderiing his miniser"; successful. Consideriug, on the one hand, that "s the Indians beheld with an eye of prejonice an?? aversion all the Europeans, and on the other, that " they heid in the highest veneration the order of Srachmans as descended from the gods; and that, " impatient of other rulers, they paid an implicit and unlimited obedience to them alone, he assumed "t the appearanee and title of a Brachmaz, that had come from a far eountry, and by besmearing his "countenance and imitating that most austere and painful method of living that the Suncunes $t$ or "penitents observe, he at length persuaded the credulous people that he was in reality a menber of " that venerable order. $\ddagger$ By this stratagem, he gained over to Christianity twelve eminent Brachmuns, " whose example and influence engaged a prodisious number of the people to hear the instructions, and " to receive the doctrine of the famous Missionary. On the death of Rosert, this singular mission was "' for some time at a stand, and seemed even to be neglected. But it was afterwards renewed, by the 6s zeal and industry of the Portuguese Jcsuits, and is still camied on by several Missionarics of that "s order from France and Portuggl, who have inured themselses to the terribie austerities that were " practised by Roeerr, and that are thus become, as it were the appendiges of that mission. These " fictitious Brachmans, who boldiy deny their being Europecass or Franks, and only give themselves ". out for inhabitants of the northern regions, are said to have eonverted a prodigious number of Indians " to Christicnity; and, if eommon report may be trusted to, the eongregations they liave already " founded in those countries grow large and more numerous from year to year. Nor indeed, do these " acoounts appear, in the main, unworthy of credit, though we must not be too ready to reeeire, as " authentic and well attes!ed, the relations that have been given of the intolerable liardships and suferings

* Otiers cell this famous missionary Robert De Nontzizus.
+ Swouxu be Sanyisis.
$\ddagger$ Urban Cerri, Etat present de l'Eglise Romaine Page, 173.
fS Nomrr, who was looked upon by the Jemits as the chief apostle of the Indians after Francors Xarrer took incredible pains to acquire a knowledge of the religion, customs, and language of Madura, sufficient for the purposes of his ministry. But this was not all: for to stop the mouthy of his opposers and particularly of tho who treated his character of Brachman as an imposture, he produced an old, divty parcimment in which he had forged, in the ancient Iudian claracters a deed, shewing that the Brackmans of Rome were of mucis older date than those of lndia and that the Jesuits of Rom: descended, in a direct line from the god Branta. Nay, Father Jouvence a learned Jesuil, tells us, in the history of his order, something yet more remarkable; even that Robert de. Nobin, when the authenticity of his smoky parchment was ealled in question by some Indian unbelievers, declared, upon oath, before the assembly of the Brachmans of Radira, that he (Nobict) derived really and truly his origin from the god Brama. Is it not astonishing that this Reverend Father shonld acknowledge, is it not monstrous that he should applaud as a piece of pieus ingenuity this detestable instance of perjury and fraud?
fiea Jouvence Kistoire des Jesuits.

${ }^{66}$ without good foundation, that their austerities are, ge erally speaking, more dreadful in appearance " than in reality; and that, while they outwaddy affect an e traordinary degree of self-denial, they " indulge themselves privately, in a free and even luxurious use of the creatures, have their tables " delicately served, and their cellars exquisitely furnished, in order to refresh themselves after "s their labors."

Tue following is an extract from a history of the Jesuits procured at Pondicherry. I have not seen the work whence it was taken; but as the idea it conveys of the dress and appearance of the members of that society, when attached to the Madura mission, coincides with the preceding accounts and with all other testimony respecting them, no doubt can be entertained of its accuracy. The work, whence it is taken, contains a representation of a missionary in his Indian habit; probably the same as is stated in the following translation to have been taken of Rocert Nobili himself:
" Nomen \& originem truxit hæe missio ab urbe Madurè, Regni apud Indos sic dicti, primaria. "Initium illi dedit P. Robertts de Noblebles societatis Jesu et Marcelli II nepos, zelo " Apostolico nobilissimus. llle, ut Brachmanes ad Christianam fidem adduceret, Europeum homio " new exuit, Indigenarum assumpto vestitu, et vivendi consuetudine, ac primo Rajas, qui apud ${ }^{6}$ Indos sunt in pretio, cultu exteriore imitatur, sed frustrà. Brachmanes socculares deinde imitatus 6. eorum more se vestit, funiculum ex Gossipio triplicatum ab humeris honoris tesseram detulit, \& in ${ }^{66}$ ommibus integrum Brachmanem sese cfinxit; at conversionern nunquam, sed solam eorum familiari" tatem obtinuit: spem tamen non abjecit Robertus, novam metamorphosim adinyenit \& a seculari. " Brachmanorum habitu, ad Religiosum transiens, more Saniàssi ponitentis induitur. Est enim Samiassi " magaa apud Brachmines æstimatio, utpote legis magistri, vitam profitentes a voluptatibus alienam, " per diem unicâ oriza comestione contentan. Hanc professus vitam Robertus multos Brachmanes "Christo adjunxit. Hæ pix Roberra industrix multas sensêre impugnationes, videbantur enim aliqcid ${ }^{6}$ involvere superstitiosum, sed eas evicit Roberres, et illis adhac utuntur in eo regno Societatis Jesie "operarii. Habitum imago representat è Gossipina tcla confectum colore in rabrum inclinantio " Illum sine ullà subuculá gerwnt. Nudis pedibus ut plarimum omninò incedunt, aliquando soccos ". duobus digitis apprehensos adhibent, capillos in nodum suprì verticem capitis colligunt; quos fascia ${ }^{6}$ gossipina plures arcumdant $\$$ contegunt."

I shall close this note by the translation of a passage from a work entitled, "Tiru-sabeiyin Charitra Positugum," or "Itistoria Ecclesiastict," written in Tamul and published by the Protestiont Missionaries, at Tranqueber in 1799. This passage is from the section relative to the transactions of the Missionaries in Indiu, from the arrival of the l'ortuguese, at page 238 of the work, and under the year 1607. The work therein alluded, as having been written in 1729 , is by the famous Jesuit Missionary Constansio Josepno Bescai, known throughont the South of India, for many raluable compositions in the high dialect of the T'anal, under the title of the Viru-Mammi and Dhairya-Nät, ha Sizimi. This extract is from the preface to the Véda Vilaceain the Elucidation of the Scriptures, written professedly against the haretics of Tranquebar.

## Transithon.

[1607.] At that time Robert Nobili, called Tamwi-Bód, bager, clothing himself in the habit of a Sungúsi, endcaroured to promulgate Cruistuanity in this country. The secretary to the cougregation
de Propaganda Fide, wrote in 1676 to $P$ spe Innocent, that Robert Nobilis', although he called himself a Brákman, wàs not guilty of falsehood.* He is represented with this habit and appearance in a picture in the convent of the paulists at Rome, under which is the following inscription,'-" Father "Robekt Nobisi, a paulist of the city of Rome, ${ }^{\text {' and }}$ of an illustrious family; a godly and learned " personage, who laboured to convert the heathens 45 years, eating nothing but rice and vegetablez, "f and died happily at Mayilupìr (St. Thomè near Madrus) on the 16th January, 1656."-6That which was written at Yélùcúrchi, (the principal residence of Bescur') in 1729 in his praise is as follows:-"As the resplendent sun runneth his course in the firmament, but alloweth not his radiant face " to be seen, so although St. 'Thomas, one of the twelve disciples of our Lord Jesus, and St. Xayier, " far renowned for imumerable miracles, entered and preached the gospel throughout this country yet " for a long time the darkness thereof was not dissipated. At last, as if the obscurity of the night, " that elsewhere lowereth over all, had been dispelled by the rising of the sun, it pleased our Lord to " turn his gracious eyes towards this country covered by paganism as by a cloud, and one hundred and ${ }^{66}$ twelve years past, to send hither orthodox priests to enlighten all souls. Tatwa-Bód,iaca Swimi who " then appeared steadfast in austere devotion, confirmed in the true fiaith, and perfect in virtue, was " first sent by the Lord, and long resided here, bright as the morniug star. Are not his Cíń"dam," (the Jyána-bodhacu C'án dum), "which, from soundness of religious doctrine, seems as if written in " rays of light, and his other works, well known and received as a sum of everlasting brightness that " hath never set. From that time to this, innumerable priests, devoted to their duty, have succeeded " each other in succession, like an undivided garland." (Part of the original is here omitted in the printed work). "But the prayers and sentences from the holy scriptures, commonly used on " the sea coasts, as corrected by him (Lobert Nobili) according to the information he received from " the Brúhmuns, either from his not comprehending the true meaning of some words, or from its " having been wilfully concealed from him, cannot be highly praised."--6 For his sake charitable ${ }^{4}$ collections for the Bráhmans converted to the Christian faill, were at this time established in the ' congregation de Propagundâ Fide at Rome by the Cardinal Onoperi' (?).

[^26]
## II.

Hournal of a Survey to the Heads of the Rrvers, Gavas and Junna.

## By Captan J. A. HODGSON, 10 ma Regt. N. Y.

A S I have had it in my power to explore and survey the course of the Ganges within the Himálaya mountains, to a considerable distance beyond Gangautri, and to the place where its head is concealed by masses of snow which never melt, I hope, that an account of my journey may be acceptable to the Asiatic Society. I must premise that, as Captain Raper's account of Captain Webs's survey in 1808, has already appeared in the Xith Volume of the Researches, I have nothing to add to that officer"s able and faithful description of the mountainous country, passed through in the route of the survey from the Dín Valley to Cajani, near Reital, where the survey towards Gangautri was discontinued in conse= quence of the serious obstacles which impeded it. I shall therefore only give an account of the course of the river above the village of Reital, where thated to make arrangements for my progress through the rugged regions before me, in which $\mathbb{I}$ found $\mathbb{I}$ had no chance of getting any
supplies of grain for my followers: I was consequently obliged to buy grain and to send it off before me, so as to form little magazines, at the places I intended to halt at; and as I learnt that several of the Sangas. or spar bridges over the river had been destroyed by avalanches of snow, I sent a large party of labourers to re-establish them.

Considering Reital, as a point of departure, it will be satisfactory to know its geographical position. By a series of observations with the rew flecting circle of Troughton, and also by his astronomical circular instru* ment, I found the latitude to be $30^{\circ} 48^{2} 28^{\prime \prime} \mathrm{N}$. and having been so for tunate as to get two observations of immersions of the first satellite of Jupiter and one of the second, I am able to give a good idea of the longitude of the place; and the more satisfactorily, as two of the immersions are compared with those taken at the Madras observatory on the same night, and with which I have been favored by Mr. Goldinghang, the astronomer there.

The telescope used by me in observing the satellites was a Dollond's forty-two inches achromatic refractor, with an aperture of two and three quarter inches and power of about seventy-five applied, having a tall stand and rack work for slow motion. The watch was a marine chronometer, made by Molineux of London, and went with the greatest steadiness on its rate, as nightly determined by the passage over the meridian of fixed stars observed with a transit instrument. The time of mear noon when required was always found by equal altitudes.




It took place as above at Madras, at . ........................ 10 . 10 49 $59 \quad 9$


Difference, 00
Therefore the error of the tables at this time is to be applied to the following immersion :
10th May, 1817.-I observed immersion of the 1st satellite, at 16. 14 21 I
There is no correspondent observation at Madras, but the nautical almanack, gives for Greenroich, 11h.Im.. 5 s .
The above error of the tables
$11.0 \quad 17 \quad 9$
Longitude of Reital deduced,
11. 0 17. 9

Mean, $\ldots \ldots$$\frac{5}{14}$| 3 | 14 | 6 | 0 |
| :---: | :---: | :---: | :---: |

Both the observations were made under favorable circumstances, the air being still and clear. On the 10th, the satellite began to lose lustre about 44; and on the 12 th, 50 seconds before its disappearance.


This was a very distinct observation, and $\mathbf{I}$ followed the satellite deep into the shadow, it gradually losing light for 76 seconds before its total disappearance-yet it gives a longitude almost a minute East of the first satellite, the preceeding night, which leads me to suspect, that though I know the seconds were rightly counted and noted, that the minute may have been inadvertently noted $13^{m}$ instead of $12^{m}$. As there is this uncertainty, I will reject the observation: nevertheless it may be interesting to know, supposing that the case, what the longitude could come out:


By a mean of several observations taken at Madras about the time of 4 Emersions of the first satellite, which I observed at Mr. Grindalu's house near Seharanpuir; Mr. Goldinghani finds $5^{\text {h }} 10^{\mathrm{m}} 21^{\text {s }}$ for the longitude of Seharanpúr.-A snowy peak called Srí Cánta is visible both from Reital and Seharanpur, its position is determined by means of a series of triangles instituted by me for the purpose of taking the dis-
tances and heights of the snowy peaks. I find the angle at the pole or difference of longitude between Seiharanpirir șation and Srí Cánta, to be i $1147^{\prime 7}$-the peak being East, and at Reital the difference of Longitude of that village, and the peak, is found to be $126_{6}^{\prime \prime}$-the peak being East, consequently the difference of longitude of Seharinpinir and Peital, is..................................................... $1^{\circ}, 2$, $41^{\circ}$ in Time $=0 \mathrm{~h} .4 \mathrm{~m} .10 \mathrm{~s} .7$ Liongitude of Seharanpir by the emersions of the first satellite, ................... 5 10 24

Four sets of distances of the sun and moon with the rellecting circle, on the 8th May, gave 5 h , 14 m .95 s.

On the whole I think $5^{\mathrm{h}} 14^{\mathrm{m}} 20^{5} 6$ or $78^{\circ} 35^{\circ} 60^{\prime \prime} 7$ may be safely taken for the longitude of Reital East of Greenwich.

Reital, contains about thirty-five houses and is esteemed a considerble village; as usual in the upper mountains where timber is plentiful, the houses are large and two and three stories high. When a house has three stories, the lowest serves to shelter the cattle by night; the second is a sort of granary and in the upper the family dwells; round it there is generally a strong wooden gallery or balcony, which is supported by beams that project from the walls. The roofs of the houses are made of boards or slates: they are shelving, and project much beyond the top of the walls, and cover the balcony, which is closed in bad weather by strong wooden shutters or pannels. These houses are very substantial and have a handsome appearance at a
distance, but they are exceedingly filthy within, and full of vermin. The walls are composed of long cedar beams and stone in alternate courses, the ends of the beams meet at the corners, where they are bolted together by wooden pins. Houses of this construction are said to last for several ages, for the Deodar or Cailon pine, which I suppose to be the cedar of Lebonon* is the largest, most noble and, durable of all trees

Trie situation of this village on the east side of a mountain, the summit of which is covered with snow, and the foot washed by the Bha girathí is very pleasant. It commands a noble view of the Sri Cánta and other adjoining peaks of the Himalaya on which the snow for ever rests. Snow alsoremains until the rains on all the mountains of the second order, which are visible hence, both up and down the river. Many cascades are formed by the melting of the snows on the foot of the surrounding mountains. One in particular descends in repeated falls of several hundred feet each, from the summit of a mountain across the river and joins it near Batheri\%

The azimuth of the Sri Cánta peak (determined from the elongration of the pole star) is $50^{\circ} 49^{\prime} 29^{\prime} \mathrm{N}$. E. and its altitude $9^{\circ} 14^{\prime \prime} 3^{\prime} 5$. It is needless here to insert the observations of azimuth and ailitudes of the other peaks seen hence and at other places on the route. In the following account of my progress up the river, I have put down such remarks as occurred at the time, and they were written on the spot, and are here in.

[^27]serted with very little alteration. Though, I am aware, that such minute descriptions of localities must appear tedious, and that many repetitions occur, I hope, they will be excused by those, who feeling interested in the subject, may have the patience to read the detail. To give general descriptions of such rude regions is difficult, if not impossible, and I trust that particular ones, though often tedious, will be found more faithful, and to give more precise ideas, of those remote recesses of the Himálaya, which I visited. For this end, and that those who are so inclined, may be able to know the positions of the places, in my journey, I have put down the bearings, and distances in paces, of each portion of the Route, with the remarks noted at the time and also the latitudes of the halting places, and these simple data will enable any one to trace the distance and direction from Reital to the end of my journey. I have only put 'down the bearings in single degrees' they are reckoned from Norlir,' which I call 360 : thus, $180^{\circ}$ is South, $270^{\circ}$ West, and so on-except in very steep ascents and descents, the paces may be taken at 30 inches.

On the 19th May, I was joined at Reital by Lieutenant Herbert, of the 8th Regt. N. I. who had been appointed my assistant, and from his skill and zeal the survey has received much benefit.-Mra Herbert came direct from Calcuttce and brought for me a pair of Mountain Barometers, but the tubes filled in Ingland had been broken ere they arrived in Calcutta: there were some spare empty tubes which we filled and used as hereafter mentioned, but we could not succeed in boiling the mercury in the tubes, to free it entirely of air - The height of Reital above the sea as indicated by our barometers is 7108 feet.

Having received reports, that the Sanghas were repaired and that the grain I sent forward was lodged in the places I directed, I left every article of baggage I could possibly do without, and having given very light loads to the Coolies that they might proceed with less difficulty, we marched from Reital on the 21st May, as follows
21st May, Reital to Tawarra, Thermometer at Sun rise, 52. Paces.
1 Slight oblique descents through fields. Cross atorrent, 10 feet wide, ............................ 1510328
2 Along hill side, slight ascent and begin descent. Flag staff at Reital 8. Wudár 138. The great water fall across the river joins it, at 143 1052 ..... 66
3 First 200 paces 315 along side of hill. Top of Sálang mountain covered with snow 95 ..... 592 ..... 69
4 Ascent rocky and rough. Observed some Micc. ceous iron ore Pollang 13: river below to right, 1 mile distant, ..... 632 ..... 45
5 Leave Pollang 1 furlong to right. Sálang mountain 112. Súlang a large village across the river $90^{\circ}$ ..... 353 ..... 1040 ..... 8 ..... 45
6 Descent and cross the Soar river on a Sangha 5 paces in length. It falls in a fine cascade from a great rock. The scenery very pictu- resque; course of the Soar down 100 where it joins the Ganges, .............................. 1020 ..... 316

7 Very rough, along steep side of the rocky mountain of Narantak; last 400 paces, sleep ascent by short zig-zags. Pollang $1699^{\text {; Sálang.... }}$
8 Oblique and rocky ascent, open to right, high precipices above to left. Sálang $125^{\circ}$.

1830
9y. Crest of the ascent to it a very bad and rocky broken path difficult and some what dangereous in some places, where a false step would be fatal. Sálang 13\%: Salang mountain 124; Reital 203"; Pollang 208; course from the Sangha generally $57^{\circ}$; Mouth of the Soar $159 \frac{\mathrm{r}}{2}$. Ganges $\left\lceil\frac{\mathrm{T}^{3}}{2}\right.$ mile right and about 2,000 feet below, .. . ................................................
10 Dèscend and cross Cajani Nadí rivulet 4 paces, oblique descent and better path 1320

$$
341
$$

11 Cajani or Kujnak Hamlet, ascent' ..... 350 ..... $9 \%$
12 Rocky oblique ascent; Reital 206; Sálang $179^{\circ}$ ..... 2090 ..... 72
13 More heavy ascent of the same kind, over fragements of granite mixed with large proportionsof quartz and feld spar, ........................... $805 \quad 67$ slight descent,
Reital (my Hlag Staff there) $800^{\circ}$. Depression of top of the mast $4,23^{\circ} ;$ Bottom $4,30^{\circ}$; Pollang $214^{\circ} 42$; Depression 814 ; Salang $187^{\circ} 44^{\prime}$; Depressiom $1244^{\circ} ;$ Bús or Sílang


From the Soar river to immediately above Tawarra, the path is exceedingly rugged, over broken masses of rock; the whole is an ascent; and in some places very steep open precipices to the right and high rocks above to the lefto precaution is required in the footing, and some places are very unpleasant to turn, where it is adviseable to go bare footed.

The mountains are of granite, with various proportion of quartz and feldspar, of which I have specimens. Heavy rain both on going and returning, could not get a latitude. Water boiled at $198^{\circ}$; the temperature of the air being $6 \%^{\circ}$.

At the village of Tawarra, direction of the small lake called Cailac Tál, whence the Dinni Garrh river issues $\% 1^{\circ}$. It is said to be 50 yards in diameter, but deep, and is formed by the melting snow; there is a small piece of level ground near it, to which the villagers drive their sheep to pasture in August.
22d Hay, Tuwarra to Dangal, Thermometer sun rise $48^{\circ}$
1 Descent through the fields and down the Dell
$\sim_{\sim}^{\text {Paces. }}$ Degrees
steep and slippery. Rhoh (or Rhai) pines and the Mohora a species of oak grow here, ...... 1310 ..... 3
2 Descent to the Elgie Gairh torrent.-Cross it by a Sangha 15 feet long. Granite rock in large blocks, with quartz nodules and bands in the bed of the stream, ..... 1320 ..... 70
3 Descent by the torrent side, leave it and cross a crest or ridge. Búci $160^{\circ}$. ..... 1630 ..... 71
4 The path is along the steep and broken sides ofa mountain, \&c. very bad, last 500 yards diffi-cult; turn some what dangerous corners, mouthof the Dimi Garh 100. The stream about20 feet wide, and is a sheet of foam fall-ing at an angle of about $20^{\circ}$ to the Ganges.Direction of the small lake at its head $130^{\circ}$;Reital 210; Ouri $40^{\circ}$; Buci $179^{\circ}$, . ........... 181042
5 Oblique descent to rivulet and water fall of 20 feet, ..... 1010 ..... 350
6 Oblique rocky ascent, ..... 1320 ..... 35
y Along the side of mountain rocky: one difficultplace: here begin descent towards the river--Reital 20.8; Buci 198; Salung 206; Ouri45 ; angle of depression of our path to theriver $17^{\circ}$. It is 4 furlongs direct to right anddeep below,1600
8 Cross Camaria Gádh (rivulet). 8 paces wide,...: 1710 ..... 50
9 Down the narrow glen of the rivulet to itsjunction with the Ganges; the whole a descent,and in many places bad and dificult, over largeblocks of rock which have fallen from above;and overturned and shattered all the trees, intheir course. The granite precipices, whichconfine the river at this place, have split and
fallen in large masses into the bed of the stream, ..... 1360 ..... 50
10 Path along the side of the Ganges, but above it.A cascade opposite falls 800 feet, but not inone sheet, river up to 6 ; path rocky, .........
11 Across the river and on its steep bank is a rangeof hot springs; they throw up clouds of steam,and deposit a sediment of a ferruginous colour;these are the first hot springs I have observedon the Ganges; the river not being fordable,we cannot go to them,........................ 10006
12 Huge blocks of rock fallen to left,186042 of hot springs; they throw up clouds of steam, and deposit a sediment of a ferruginous colour; these are the first hot springs I have observed on the Ganges; the river not being fordable, we cannot go to them, . . . . . . ................... 1000
13 Climb over and under the ruins of a most tre= mendous fall of the precipices; blocks of granite from 100 to 150 feet in diameter are thrown on each other, in the wildest and most terrific confusion: the peak whence they fell is perpendicular and of solid rock. This fall took place 3 years ago, ..................................... 2120
Path better, ..... $3 \% 0$ ..... 352
Cross the Ganges by a Sangha made of two stoutpine spars, laid from rock torock. "It is a groodbridge of the kind and about $3 \frac{1}{2}$ feet wide;the space between the pine spars is overlaidwith small deal shingles which are tied logetherso as to form a platform:-Like all the rest,this Sangha is open on bothe sides, and un-pleasant to pass, being from the length andelasticity of the pines, so springy as to remboundto every step the passenger takes.-The riverbelow the Sangha was deep, and very rapid,being confined by rocks. Its breadth underthe Sangha as measured by a chain was 50feet, height of the Sangha above the stream 30feet.-The river is more expanded above andbelow - Sanghas are always placed in thenarrowest parts, .................................. 40080
Tent at Dangal, a small flat so called, on theleft bank of the Ganges, and at the confluenceof the Limea, a large torrent-No village here.The halting place is surrounded by high andsteep rocky mountains and mural precipices:observed some bears climbing among the rocks.23031

Time of marching 5 hours and 48 minutes, a very laborious journey. The path is very rough and merely a succession of steps from one broken crag to another; some places were very difficult. To the Ganges, was descent, then we passed along its bank, and at no great height above the stream, which though not wide is deep, and impetuous, falling from rock. In the less rapid parts pools are formed, where the breadth may be 200 feet, but genewally it appears from 100 to 120 feet wide; several rills besides those noted above, fall into the river; it is needless to say, that they fall in cataracts, the sides of the river, being every where bounded by high cliffs. The rocks are granite, of much the same composition, as on yesterday's march. 'The dip of the Strata is about 45 towards N. E. as usual, and the whole line of inclination is visible from the river to a great height above. Water boils at $202^{\circ}$-The temperature of the air being 54. On our return, the Barometer was deranged at this place. It is to be remarked, that on going up we did not fill the Barometers, fearing they might be broken, and the Mercury spilt, of which we had very little; our store of it having been diminished, by those various accidents to which every thing that can be lost, or broken, in these rough regions is subject. Of these Barometers more hereafter.

- Latitude Obṣerved.
M. A. Spica. Reffecting Circle, Hodgson's $\begin{array}{lllll}30^{\circ} & 5 \dot{4} & 32^{\prime} & 8\end{array}$

Lieutenant Herbert's.... 288

|  | Mean...... 30 54 30 8 |
| :--- | :--- | :--- | :--- | :--- |

## 23a May, Dangal to Súci.

1. Lofty cliffs on both sides of the river; path generally a slight ascent but rocky and difficult, ... 1005
2 Along the bank of the river. On Rocks. Narai peak crowned with snow, $43^{\circ}$. Kanouli Gaidh, torrent falls in cataracts from right bank $15^{\circ}$; Bús peak $1800^{\circ}, \ldots . . . . . . . . . . . . . . . . . . . . . . . . .$.
3 Path rocky and rough above the river, ........'
4 Path ditto, granite rocks, steep and high on all sides, .................................................
5 Cross the river on a Sangha at Deoráni Gháti, it is a new and good bridge of the kind, but long and very elastic s height above the stream, 40 feet, breadth of stream under the Sangha 30 paces or about 60 feet. The high flood mark of the stream when swollen appears to be about 14 feet, above the present level. A wild and savage looking place. Precipice around, granite and some black and grey rock of a laminar texture.-Rocky path from last sta-tion.-Pines of various kinds, and the true deal fir grow heres immediately on passing the San= gha, the path leads over an Avalanche of snow which reaches to the river's margin; it is many feet thick, and has fallen this year, and brought down all the trees in its path. This
is the first snowbed we passed over on the Ganges,

6 Path along right bank. The river a bed of foam falling from rock to rock. Five hundred yards further on, are the falls of Lohari Naig, where the river is more obstructed than in any part of its course and tears its way, over enormous masses of rock, which have fallen into it from the mural precipiee which bounds its left shore. This frightful granite eliff of solid rock, of above 800 feet high, appears to have been undermined at its foot by the stream, and the lower and middle part have fallen into it, white the summit overhangs the base and the riverThe vast ruins of this fall extend for abpiout a quarter of a mile; the river has now forced its way through, and partly over the rocks, with a noise and impetuosity, we thought could not be surpassed, but on our return in June, when the Ganges was doubled in depth, the scene, was still grander. It then just covered the tops of the rocks, and one of the falls of the whole stream, we estimated at 25 feet perpendicular, and below it were more, close to each other of litle less height. The scene is full of sublimio
ty and wildness, and the roar of the water is astounding.

On the right Bank also, there has been a recent large slip of the mountain, but the above mentioned on the left bank, is for its height, the most formidable fall I ever saw. It is not recent.

7 Cross the Ganges by the Sangria of Lohari Naig 16 paces long and 25 feet above the stream; which is here narrow, deep, and has a great fall; the ends of the Sangha (which is very narrow) are supported on each side on 2 great tabular granite rocks. That on the right bank is circular, and 150 feet in circumference. It is of a coarse brown granite, with quartz intermixed, and is decomposing in some places. The mountains on both side of the river are wery steep. On the left bank of the river observed a rill, impregnated with calcareous matter, which is so abundant as to incrust every thing it touches very strongly, and we collected large pieces of this lime, which is pure, like that at Sansár Dlearcu-This is a singular thing in a region of granite......................... 1410

8 The Loi Gorrl river joins the Ganges, cross it by a good little Sangha. This river is 20 feet wide. This last station has been almost level, and a grod and pleasant path, along a flat of 150 yards wide by the river side, shaded by Caksi, Mirei, Onil, and other trees. From the edge of the flat, the rock rises in a gigantic mural precipice of about 1500 feet perpendicular, and the same across the the river. Strata mach inclined. The Lot Gárh river, comes from the snow to the right, and is yery rapid. Ganges here expanded and the scenery beautio ful Lat Gárh up 120....................... 1500
On our return breakfasted here,
Barometer............. 23 144
Thermometer attached $53^{\circ}$
Detached............ 56
9 Pleasant path and good by the river side, which is more expanded, and the channel not so rocky. Breadth 150 to 200 feet, a snow Avalanche here, leave the low bed and begin ascent, .... 1008

10 Strong ascent, first 500 paces, East, then $5^{\circ}$; here begins very steep ascent,
across the river with well defined strata, at an angle of about 45. The strata are so arranged in these regions, which are the feet of the Himálya, but I have observed, that near the tops of the highest peaks, the layers of rock are nearly horizontal. Name of. above mountain Baldera Lifra; steep as it is and nearly devoid of soil, the pines nevertheless contrive to fix their roots in many parts of $\mathrm{it}_{\mathrm{y}} . . . . . . . . . . . . . . . . . . . . . . . . . . . . .$.
12. Bad and narrow path overhanging the river. 'The Soan Gád (river) joins the Ganges below, to West; course from snowy peaks $280^{\circ}$, appears to be 30 feet wide and not fordable, very rapid, .............................................. 548
13 Oblique descent, not steep, but difficult over lumps of broken rock, the ruins of a slip of the mountain, o... . . . . . ........................... od 792
14100 feet of ascent, at an angle of 70 , rest, descent of the very steepest Kind; in the worst part, the path is narrow, and over hangs the river, 2 or 3 places are unpleasant to pass,........... 392
15 Last 1000 paces an agreeable change, being a good path where one may walk at ease, Avo = lanche of snow to right, and a arge slip of the mountain, the ruins of which obstruct the path, 2500
16. Bad and rough, here cross the Ganges on a Sanghn, about 45 feet above the stream, breadth of the roaring stream below 17 paces, or 42 feet. The bridge about $2 \frac{1}{2}$ feet wide, ill secured and unsteady, it extends from one iarge rock to another. The current extremely violent, and the fall of the river great,.....
I7 A Torrent from the Saci mountain falls in here, at this Sangia, on return, barometer 29in. 90. thermometer, 52.

18 Kong ascent to Suci, a deeaying village ch 9 houses, of which 3 only are imhabited. It is on the West side of a mountain, and surrounded on all sides, by the Himálya rocky precipices, crowned with snow. The river is about 1,000 feet below, foaming in a confined channel,

As to the march, it was very Iong and laborious, we performed it in Fi hours, propably $\frac{1}{5}$ of it was hand and foot road. The rest except the two places of flat mentioned above as usual, a succession of long, strides or little careful steps from one broken crag to another. The three Sanghas over the river, having been lately repaired are not dangerous, but too high, narrow, and elastic, to be pleasant to cross: the people from the
plains passed them very well (three persons excepted) but many of the moune tain coolies, were obliged to be led over, with their eyes shut, as well as some of the Goorkha sepoys. To get well over then, it is proper to take careful steps (but not to go too slow) and to keep ones eyes steadily fixed on the platform, and by no means to look over the side, at the foaming gulph belows or to stop or hesitate when on the Sangha. The scenery to day was in nature's grandest and fudest stile, wall like precipices of compact granite bounding the river on both sides, to the immedio ate height of or 3,000 feet: above those cliffi is snow.

Latitude Observed. M. A. Spica. Hodgan; Circleg.. $30^{\circ} \quad 59^{\circ} 40^{\prime \prime} 5$ RIerbert: Sextant, ... 305940
24ih May, Süci to Deralt 鹏hermometer O. R. 45.
1 Road along side of mountain, moderate ascent ..... 465.
2 Crest of rise—Ganges up 14............................ 510
3 Descent and cross the Garges, by a Sangha, lengthof the Bridge 115 feet, breadth 3 feet-breadth of theriver: below, 82 feet-depth to the surface of thewater, from the Sangha 19 feet (measured by thechain.) This is the best Sangha, on the river andthe water below is not so rapid as usual-Thalasvillage of 5 Houses, $340^{\circ}$; above Jhala, the country is

$$
\text { not at present inhabited, . ............................... . . } 1300 \text { Is }
$$

4 A fine view up the river which for several miles abovethis, flows in a more expanded bed in a narrow valley;the feet of the mountains bounding it, are less steep,and are clothed with cedars, Good path alongsand and pebbles in the river's bed, the current ofwhich more gentle though very swift. The bedis about 600 yards wide, and will be overflowed whenthe river is at its height. Lower line of snow,generally, 2000 feet, above the river, though severalAvalanches reach down to its margin, Jhala $220^{\circ}$;Soan Gádh river (mouth of) 6․ The air is verycold,.................................................... . 2000

5 Ascent and descent of a rocky point above the river. We have now turned the snowy range, seen from the plains, and brought it to our right, as will be seen by the change in the course; the march from Dangal to Suci, and on to this place, may be considered, as in that gorge of the Himálaya, through which the river forces its way, to the foot of those mountains of the second order, which are the beginning of the spurs of the grand range. We have now the great snowy peaks on both sides of the river, and it is henceforward bounded by them; those to the right, are visible from Hindustan; those across the river, or to our left, are not visible from the plains, being hid by the southern
ridges. The line of the outlet of the river is very perceptible from the plains, and the Sricanta peak, the western foot of which it washes here, is conspicuous from Seharanpur, and the Doab. From hence onward, the course of the Ganges is to be considered, as being within the Himálaya, differing from the Jumna, in as much as that the source of the latter river, is at the south west feet of the snowy peaks, seen from Seharanpur, and not within the Himálaya.
6 Pleasant and level; a snowy peak towards Barrasak shews itself up the Soan Gadh: it is called Dumdara, and is very white with snow; mouth of the Soar Gádh- 322. Down its bed the plunderers from Barrasah, and the western districts of Rawaien penetrate in the latter end of the rains. As far as Barrasah, the country is uninhabited for six days journey except at Leuh panck Gong, which is three Coss on this side of Barrasah. Those districts are on the Tonse river, and are the seat of numerous gangs of plunderers and murderers, who much infest this part of the country,........................................... 595obliquing up and down, from the river, ........... . 2200
8 Pleasant in a forest of many pines, ..... 438
9 Ditto; top of oblique ascent. Descent to dells ..... 350

10 Descent to brow of small precipice, overhanging the river which here falls at $a^{d}$ considerable angle. Mouth of the Haril large rivulet $345^{\circ} 7$ furlongs, comes from 30, from snowy peaks. Here forest of cedar and the true deal pine which is a tall and graceful tree,.............................................. 600
11 Ascent and descent to precipice over the river. Across the river is a small plain of $\frac{1}{2}$ mile wide, where there was once a village, called Suor,....................... 415 ..... 80
12 Cross a torrent from the snow, ..... 265 ..... 80
13 Búghti Gádh (torrent) falls in opposite at right an- gles. Here oblique descent, cedar forest, ..... 335 ditto
14 Descent to the bed of the Ganges, and cross the TitGhár a large torrent, which falls in a most beautifuland picturesque cascade of 80 or 100 feet, over aBhat 08
rock, bordered and shaded by high feathery pines and spreading, cedars, ..... 495 ..... 90
15 Flat, over sand and pebbles of the river bed, here expanded, ..... 500 ..... 75On our return we halted at this place to take the altitudeof two very sharp snowy peaks, which now appeared tothe south, or to our right. We measured carefullywith the chain, a base of 165 feet, which was thegreatest extent of level ground to be found; with thisbase we found a longer line of 1568 feet, and fromits extremities, determined the distances of the two
peaks, and their heights above the east end of the base as follows:

First peak called Sewmarcha Chauntal, distance 16440 feet, bearing due south. Its angle of elevation $26^{\circ}$ $43^{\prime} 42^{\prime \prime}$ and height above the river 8278 feet.
Second peak no name, but it is a lower part of the Srícánta mountain.
Distance 15374 feet.
Magnetic bearing $170^{\circ}$. $43^{\prime}$.
Angle of elevation. $25^{\circ} 55^{\prime} 30^{\prime \prime}$.
Height 7473 feet above the river.
Barometer 22 inches, 249: thermometers attached $79^{\circ}$.
Detached $78^{\circ}$.
16 Last 700 paces $82^{\circ}$, and ascent first part flaf, .......... $1700\left\{\begin{array}{l}75 \\ 82\end{array}\right.$
17 N. B. On our return we found gooseberries at this place: they were of the large hairy kind, and though not ripe, made good dumplins,....................... $1090\left\{\begin{array}{c}63 \\ 74\end{array}\right.$
18 Gradual descent, and cross the Kheir Gádh large rivulet, by a Sangha, at Derali, a village of 6 houses but now deserted, on account of the failure of the crops and incursions of banditti,........................... 810 . 88

Miles by the wheel $\gamma^{\mathrm{m}} 6^{\mathrm{f}}$ being 13200 yards for paces, 14345

The road to-day, considered as a mountain path, was excellent, two or three places excepted. The north bases of the mountains which we passed
along, are moderately steep, and are clotked with noble cedars, and various sorts of large pines, of which the Cshír and Rhai or Rher are the laygest; Cshír is a name indiseriminately given toseveral of the large leaved pines, but the tree so called here, is the true Deal; it grows to a great height, and bears a resemblance to the common Cshis or turpentine fir, which abounds in the lower hills, but which is never seen in company with the cedar, (Deodár: I took some specimens of this Deal, it is light and hàs a Gae grain: the Rhai is, a lofty pine, it has a graceful appearance, the leaves are pendent. The wood of it is not esteemed for building, being heavy and knotty: the cedar is always preferred for that purpose. Froin the Sangha to Berali, the Ganges flows in an expanded bed with a swift current over stones. Yesterday it was a succession of falls from reck to rock, and bounded by frightful precipices. To-day the scenery was very interesting, the river being bounded immediately to the north by the cedar forests; above which, towered the sharp snowy peaks, and many torrents and cascades fell from them. I never made a more delightful march; the climate is pleasant and the weather bright to-day. The village of Deráli is situated in a rocky recess and commands a fine wiew of the river, and of the north sides of the snowy peaks behind Jamnautri. There are three small temples of stone by the river side, they are of good workmanship. Derali was plundered last year by banditti from the westward.

Latitude Observed M. A. Spica. Reflecting circle, $311^{\circ}$ 20 $25^{\prime \prime}$
Lieut. Herbert, M. A. D. Sextant,
8

Mean, .............. | $31 \quad 2 \quad 16 \quad 5$ |
| :--- |

Pole star hid by the mountains as usual.
25th May, Derálíg to Bliairo Gháti. Thermometer, sun rise 54
1 Much rain here this mornings and snow above: steepand almost perpendicular ascent, from the village up;
a mass of rock, ..... 310 ..... 85
2. Cross a torrent 7 paces wide on a Sangha; path in gene- ral level on the banks of the river but occasionally slippery and bad, ..... 1400 ..... 78
3 Road generally level along bank in the cedar forest.
Cross a large snow avalanche, ..... 1300 ..... 89
4 Road as above, cross a large avalanche of snow. Cedarforest; rocky mountains across the river almost perpen $=$
dicular, . .................................................. . . . 1800
5. Crest of nearly perpendicular, and difficult short ascent : crags overhanging and threatening to fall. The river bed the whole way broad and strong: current. Deráli $256^{\circ}$; lofty peaks on every side, rising imme. diately from the river. Tinis place is 1000 feet above it. Cedars of great size here, . . . . . . . . . . . . .......... . 1210. 68:
6 Road generally level, on bank of the river: cross an avalanche of great magnitude, being a fall of lumps of snow like large rocks, it has brought down, and broke to pieces, all the cedar trees in its path; perpenedicular; rocky precipices rise immediately from the river bed, to the height of 1500 and 2000 feet; high snow pealss on all sides, large cedars at their feet, .... 1900 103
Rivers, Ganges and Jumna.87
7. Path as above in cedar forest. Wall like precipices of great height rise from the river bed, above them is snow, ..... 1714 ..... 105
8. Cross Licunga a small river on a Sangha, a little above its mouth, falls from the snow to right and joins the Ganges,..8........................................................ 837 ..... 138
9. An exceedinglysteep ascent; river not visible but close below mountains with bare peaks, not a blade of herbageon their rocky sides. In front Decami snowy peak 105;to our left a mountain called T'hur, the S. side ofDecani is washed by the Baghiret'hi, and the N. sideby the Jahni Ganga or Jóluneví, their confluence-being at Bhairoghaiti. Whis place is called Ratenta, 780140
$10^{-}$Another steep and toilsome ascent, ..... 1065 ..... 110
11 Descent over broken fragments of peak. A rocky preci-pice nearly mural of 1000 feet, overhangs the rightbank of the Ganges, which here as usuat rushes overrocks with an impetueus and foaming current. Infront is the gigantic peak Decani rising immediatelyfrom the bed of the river, on the left the almost equallyhigh one of 'T" ${ }^{\prime} u$, below, immense masses of graniteoverhang the river. The scenery is very grand.Very large cedars here, ................................... 930130
$12 . J a ́ h n e v z$ river $72^{\circ}$. ..... 343: ..... 102
13 A sweep from S. to E. brings us to that most terrificand realiy aweful looking place called Bhairoghátia.

The descent to the Sangha is of the steepest kind and partly by a ladder. The Sangha is inclined far from the level, and as seen from the height above it, cannot fail to inspire the beholder with anxiety as to his safe passage over it. It is indeed by far the most formidable Sanglia I have seen; the height of the platform above the river, we measured by dropping the chain; it was 60 feet; one is apt at first sight to estimate it at much more, however this height, added to the circumstances of the narrownese of the Sangha (about $2 \frac{1}{2}$ feet wide) its elasticity, and its inclined position, is sufficie ent to render its pagsage disagreeakle, it being (like all the rest) quite open at the sides. It is laid from one side of the precipice to the other, the end on the left bank is the highest, the precipices in some places are quite perpendicular, in most, nearly so, rising to the height of 3000 feet above the stream, they are of compact granite; on some ledges there is a little soil, where the cedars fix their roots. The river below the Sangha is closely confined by the wall like rocks, which are perfectly perpendicular, and its course is thus bounded, nearly to Gangautri. The breadth of the stream is about 45 feet, and it is deep under the bridge, ............. . . .................................. . . 600

Whicer is in a very strange place for a tent to be in, and one of the most curious sights among many here, is to see a little tent pitched, under: vast overhanging masses of rock, at the confluence of these two rivers, the Bhá gírat'hi and its foaming rival the Jáhni Gangá or as more properly called the Jáhneva; the strange and terrific appearance of this place (Bhairog ${ }^{9} h a^{\prime} t{ }^{\prime}$ ) exceeds the idea I had formed of it: no where in my travels, in these rude mountains, have I seen any thing to be compared with this, in horror and extravagance. Precipices composed of the most solid granite, confine both rivers in narrow channels, and these seem to have been scooped out by the force of the waters. Near the Sainga, the Bhágirat'hi has in some places scolloped out the rock which overhangs: it. The base of these peaks is of the most compact sort of granite, it is, of a light hue, with small pices of black sparry substance intermixed. From the smoothness of the rocks which confine the stream and which appear to have been worn so by water, I think the stream must have formerly flowed on a higher level, and that it is gradually scooping its channel deeper, for it does not appear that the walls which confine the rivers, are masses fallen from above, but that they are the bases of the peaks themselves. Enormous blocks have indeed fallen, and hang over our heads in threatning confusion, some appear 200 feet in diameter, and here are we sitting among these ruins, by the fire side at noon. - Thermometer $5 \%^{\circ}$. What are these pinnacles of rock, 2 or 3000 feet high which are above us like! I know not. To compare small with great, I think the aptest idea I can form of any thing that might be like them, would be the appearance that the ruins of a Grothic cathedral, might have, to a specta: tor within them, supposing that thunder bolts, or earlhquakes had rifted
its lofty and massy towers, spires and buttresses; the parts left standing, might then in minature give an idea of the rocks of Bhairog'hátí.

The great cedar pines those gigantic sons of the snow, fringe these bare rocks and fix their roots where there appears to be very little soil, a few also of the larger deal pine, are seen, but inferior trees do not aspire to grow here. The day is dull and rainy, and I cast my eyes up at the precipice overhead, not without awe, a single fragment might dash us to pieces. Avalanches of snow and rock such as we have passed to-day, and indeed for these three last days, shew by their effects, their vast powers of destruction, for they bring down forests, in their overwhelming course, and dash the cedars into splinters. These avalanches have all fallen this season, they have in places filled up the dells and water courses to a great depth with snows and extend from the peaks to the margin of the river.

A Painter wishing to represent a scene of the harshest features of nature, should take his station under the Sángá of Bhairog'hátí or at the confluence of the Dhá girat'hé and Jáhnevé rivers, here it is proper to take some notice of this latter river hitherto little known. Though the Bhágirat'tí is ssteemed the holy and celebrated Ganges, yet the Jáh. nevi is accounted, to be and I think is, the larger stream. From a Bráhman who officiates at Gangotrí, and who has been up it, I collected some particulars which though perhaps far from correct, may serve to give an idea of it. By the course of the river is a pass to Bhoat or Thibet, by which the people from Reital and the upper villages of Rowaien
so to get salt, blanket cloth and wool, in exchange for grain, The trade is trifling, and not more than 100 people go yearly, in the latier end of the rains the road is open. They carry their goods on sheep and goats. The Bráhman fias been at the frontier village called Neilang, it is four long, and very difficult days journey. The first three days are up the course of the river, high above its bed, for the most part, but occasionally. descending to it. It is exceeding steep and dififcult.

1st Day.-They go along the high precipice on the right bank of the river-a Sángáa at the end of a long march. Very bad path-no village.

2D Day.-Having crossed, very bad path to Cartcháa halting placeno village. Cedar pines here.

30 Day.-On same bank of the river to Handouly, a halting place, but no village. Not a very long march.
$4 \pi a$ Day. - The frontier or (Do-bháshiás) village called Neilang in the district of Tungsah, at this village, the river seems (they say) but little diminished in size, and there is a Sángá over it. This man can give no account of its origin, except that he believes it comes from some hills in Bhoat. The first part of the course of the river upwards, so far as can be seen from Bhairog'háť is $72^{\circ} \mathrm{N}$. E. and from what I can understand, it appears that this river has its source to the north of that ridge of the Himálaya, which bounds the Bhigiratht, to the N. E. or on its. right bank, and that, between Bhairog'hatí, and perhaps the third day's
march abovementioned, it forces itself through the range. The Brafmars says that at the village, and for the last day's march to it the mountains are bare of trees, and that they are not the Cyla's mountains (i. e. not what we call snowy mountains, but that the Cyla's peaks towards Gangotri are seen to the right, and so they would be, if we suppose the course of the Jahnevi up, to be about N. $7 \mathcal{H}$ Ist; and the course of the Ganges, is, we know from hence considerably to the S. of East. By the way I may mention here, that Cylás is a general appellation for high ranges always covered with snow (in the same way as we say $\mathrm{H}_{\text {- }}$ málaya or Himáchul, (which last indeed literally means snowy peaks). At Neilang the houses are built very low, on account of the high winds. Travellers suffer much from difficulty in breathing caused as they say by the bic'h or bish i. e. exhalations from poisonous herbs which grow on the high bare knolls. This frontier district of Tungsah appears to be considered to belong, to what they call here Bhoat or Thibet, and they. pay their land tribute to a collector who comes from Chaprangs of the distance or size or direction of Chaprang I could not get any satisfactory account, but it appears to be a Chinese dependency. The district also gives to the Rajá at Bassáhir a blanket per man every third year, and a smali complimentary tribute of $D a^{\prime} c^{\prime} h$ (raisins) to the G'harwal Raja. The inhabitants are called Dowháshiás from their speaking the languages of both Giharwál and Bhoat and they act as interpreters and brokets.

The exports from Rawaien are, rice, mandiwá and páprá (coarse grains. Tobacco ind Tamashas; Imports, salt, and ihick zroolen cloth and wool

The Rawaien people go in the month of Cartic, because the wool is then ready, but in the month of Sa wan the road may be passed, and that would be the best time to go.

HAD the season been more advanced and if I had had grain I should have been tempted to go up this river, it is an interesting object of future research, but there are many others and one does not know which to attend to first, but it is my intention to explore this river next season.

## Latitude observed. Confluence of the rivers at Bhairog'hatio.

M. A. Spica. 4 sets $30^{\circ}, 0 i, 3 \ddot{8}, 7$ cloudy weather and no other star visible.

## 

On return June 3d.-We encamped in a much better place, a small piece of flat at the summit of the cliff which bounds the Ganges on its left side. It was a pleasant and secure situation and under the shade of the cedars. At this place, about 700 feet above the river, the barometer (unboiled mercury) stood at $21^{\text {in }} 524$ tem perature of air $70^{\circ}$.

Latitude of this camp $30^{\circ}, 01^{\prime}, 22^{\prime \prime}, 5$ good observations, junction of Bhágirat'hí and Jáhnevi rivers $72^{\circ}$ distant 1 furlong.

26th May-Bhairog'háti to Gangotrí-Thermometer

I A very steep and difficult ascent, we pass along the perpendicular face of the precipice by means of a scaffolding of two narrow planks, which appear very rotten and ill supported at the ends, under the scaffold is a chasm of 300 feet deep. Immediately afterwards ascend by ladders, the precipices bounding the river being here like walls and these scaffolds and ladders are laid from projecting points to enable one to pass, $330 \quad 170^{\circ}$
2 Three other passages along the precipices, and over chasms by means of rotten planks, then an exceedingly steep ascent by short zigzags to a flat, at the foot of Decani peak, here is a small temple of Bhairo Lál who is esteemed the janitor of Gangotri, at this place, pious Hindús leave their shoes, . ...................... 475
3 Road tolerably level, winds rounds the South West. side of Decani peak, the river is about 800 feet below to the right and rising from its bed is a wall of mountains of a height I find it dificult to estimate, below to the river steep precipices-Sewré peak $236^{\circ}$ Miánrí peak $150^{\circ}$..
4 Path very difficult, a few paces further on cross another frightful chasm by a platform of a foot or 18 inches wide--Road over masses of granite piled in confusion, they are fragments of a fallen peak. Looking up we
Pacte. $\stackrel{\text { Degreter }}{\sim}$
see the tower-like summits of Decani almost over-hanging us. :The whole way strewed with falls ofrock from them.. Many traces of bears-........... $630 \quad 160^{\circ}$
5 Wind round the brow of the hill, and come upon anopening where the eye is saluted with a full view ofMiánre peak, and in the distance the mountains ofHudr Himálaya, crowned by the peak of Dugdrtowering to a great height, the pure snows on it shinein the suns rays with dazzling brilliancytan on.0..... 690140
6 Bad and slippery path, as before high rock above to left, the river deep below to right cedars here, ..... 310. $186^{\circ}$
7 Ditto ditto ..... 23013 管
8 Rather better path, the river deep below foaming in itsnarrow and rocky bed, mosi fentastic great snow peakover Gangotrí:119,
9 Black rocky peak across the river-Call it Iron Sides133
10 Better path but broken, and a torrent falls in from thesnow across the river $800^{\circ}$-Iron Sides $129^{\circ}$-Cedars-Not much ascent or descent, path hence chiefly undu-lating and lying along the steep side of the mountain, 390012711 A long steep side. River deep below in asteep confinedchannel of light coloured granite. Cedars here-IronSides $129{ }^{\circ}$,$720 \quad 127$
12 Path as before, across the river is a cascade falling througha large snow bed; the snow reaches in several places
$\overbrace{\sim}^{\text {Paces. }} \sim_{\sim}^{\text {Digress. }}$from the river bed on the opposite side to the summitof the mountains which are very steep. We are alomost in sight of Gangotrí, ............................. 39095
13. The river flows under beds of snow which have fallen into it, from the peaks, and cover $\mathrm{it}_{\text {, }}$ ..... 1692 ..... 96
14 Steep ascent and cross a torrent, ..... 292 ..... 32
15 Pass above a Cascade falling over a precipice of grey gra- nite with black sparry spots. Wonderfully steep precipices on both sides of the river, on this side the rocks are quite bare and shattery, ..... 1082 ..... $92^{\circ}$
16 Cross above a Cascade falling from a rocky gorge to theleft-Path extremely bad.. This river below foamingbetween wathe of rock perfectly perpendicular. ASánga (now destroyed) had formerly been laid overat this place, by the banditti who in the rains plunder the Cédárial districts to the Eastward. Therocks throngh which the river flows have horizontalstrationd the light hue of Portland stone-They are asusuat, ghante- The cedars hereare poor and starved-Very high baré rocks above to left. Rudr Himá-laya a snowy peak $95, \ldots .$. . . . . . . . . . . . . . . . . . . . . . . . 1510$90^{\circ}$
17 Descent. Gaureund a small flat space by the riverside $=$ On -the opposite side the Cédargangá falls intothe Ganges from 107. It has no claim to the title of aRiver, theing merely a torrent from the snow, of 10 or12 feel wide and shallow. It comes out of a rocky
grorge, and its course cannot be longer than three or four miles,...................................................... 1352

18 Gangotri. The small temple of Gangá Maí and Bhagirat'lur, on right bank of the Ganges, $\ldots, \ldots \ldots . \ldots .575$ Do.

16,3\%8

Tue path to day was of the worst description, and is on the whole I think the most rugged march we have hitherto had, though there are not any long ascents. Nothing can be more unpleasant than the passage along the rotten ladders, and inclined scaffolds, by which the faces, and corners of the precipices, near Bhairog $h a^{\prime}$ it $^{\prime}$ are made. The rest of the way lies along the side of a vary steep mountain, and is strewed with rocks. The views of the snowy peaks which are on all sides, were very grand and wild.

The rocks are of granite, but of a lighter colour than usual, and specks of a bright black sparry substance are interspersed in thens, at the distances of from one to three inches.

The rivers bed from Bhairog.hátí to Graurícund, was between murab precipices of 2 or 300 feet high; above them was the steeply inclined ground, along which our path laid.-Whough very rocky, there were many places with soil, where the cedars grew, but not large-Above the path to our left were bare rocky precipices, on the summati of which the
snow lies: at Gauricund and Gangatri, the rivers bed becomes more open, The temple at Gangotrí, is a Mundup of stone of the smallest kind; it contains small statues of Bhágirat'hé, Gangá, \&c. and it is built over a piece of rock, called Bhágirat'himila, and is about 20 feet higher than the bed of the Ganges; and immediately above its right bank, there is also a rough wooden building at a short distance for the shelter of traw vellers--By the rivers side, there is in some places soil, where small cedars grow; but in general the margin is strewed with masses of rock, Which fall from the precipices above-the falls do not appear recent.

Too much tired to attempt to boil mercury in the tubes to day. - At night, having prepared the instruments to take the immersion of one of Jupiter's Satellites, we laid down to rest, but between 10 and $110^{\circ}$ clock, were awakened by the rocking of the ground, and on running out, soon saw the effects of an earthquake, and the dreadful situation in which we were, piched in the midst of masses of rock, some of them more than 100 feet in diameter, and which had fallen from the cliffis above us, and probably brought down by some former earthquake.

THE scene around $u^{2}$, shewn in all its dangers by the bright moon Hight, was indeed very awful-On the 2 d shock, rocks were hurled in every direction, from the peaks around, to the bed of the river, with a hideous moise not to be described, and never to be forgotten: after the crash caused by the falls near us had ceased, we could still hear the herrible sounds of heavy falls in the more distant recesses of the mountains. Wer looked up with dismay at the cliffo over head, expecting that the
next shock would detach some ruins from them; had they fallen we could not have escaped, as the fragments from the summit would have flown over our heads, and we should have been buried by those from the midd!e.

Providentraley there were no more shocks that night. This earthe qualre was smarly felt. in all parts of the mountains, as well as in the plains of the $N$. W. provinces of Hindustan.

In the morning we removed to the left bank of the river, where there is a bed of sand of about 150 yards wide; then is a flat of soil with trees of about 20 yards wide, and immediately above it are precipices with snow on them; here we were much more secure; in the afternoon, indeed, the effects of the snow melting, often caused pieces of rock to fall from above, to near our station, but we could avoid them by running over the sand to the river side, which could not be done on the right bank; besides only comparatively small pieces fell here, and in day light, so that this is much the best side to encamp on. -We had the curiosity to measure trigonometrically the height of the cliff, at the foot of which we were during the shock, and found it to be 2745 feet.

THus day, the $2 \%$ th, we had a slight shock of an earthquake, as well as so on the 28 th.

## Barometers.

Filled a new and full length clean tube with pure mercury, immediately after filling (unboiled), it stood at 20.890
Thermometer attached. $.78_{8}^{\circ}$
Ditto detached: ..... 68

Having hung the Barometer up in the tent, and allowed it to acquire the temperature of the air and adjusted zero, the following heights wo observed:
Thermometer attached $77_{0}^{\circ} \frac{1}{2}$ upper surface of the Ditto detached $63^{\circ}$ KMercury Inch ..... 20. 8320
Second reading an hour afterwards, $>$ Mercury upper convex surface $\}$
Lower part of head of column $\{$ 7335 Det. do. $6{ }^{\circ} 7$ ..... 7410
An hour afterwards upper convex ..... 20. $8255^{\text {Ther. }} 72^{\circ}$
Lower line ..... 808061
Afternoon, outside of the tent three hours after filling the tube;
Mean at 40 clock ..... 30. $7842 \quad 57$

There were very few and but small (Air) bubbles in the column, and the vacuum was evidently pretty good, as shewn by the smart cracking of the mereury against the top of the tube.

$$
\text { Water boils a o . . a. . a a o o. o, o . . o, o . } 196^{\circ}
$$

We now begin to boil the mercury in the rube. The tube as usuàl broke. None but a professed artist can expect to succeed in this dificult business, once in ten times.-With the unboiled mercury, 绝ere must be an error, but it should not, I think, affect the heights more than 200 feet, and generally not 100 feet; and as under the present circum slances we cannot do more, we must be content with such approximate
altitudes: and I reckon it of some consequence, to have the heights of these places even within 200 feet, as hicherto no idea could be formed on the subject.

When a tube is filled with unboiled mercury, which of course con tains air, it stands at first higher than it ought, from the air dilating the column; but, after a short time, much of the air escapes into the upper part of the tube, where the vacuum ought to be, and there expanding, presses down the mercury in the tube, thus making it lower than it should be. 'The mean height will not differ very much, perhaps not more than two tenths of an inch, in moderate heats, from that shewn by a boiled tube.

The barometers I had, were 2 out of 6 sent from England, to the Surveyor General's Office; they were made by Berge, and are very fine instruments, but so little attention had been paid to their packing, that the tubes of them all were found to be broken, when they arrived in Calcutta, as well as most of the thermometers belonging to them: there were spare, but unfilled tubes sent with them, and some of these would not fit.

Whenever barometers are sent, there should be to each at least 6 spare tubes filled in England by the maker, and hermetically sealed, and these should be carefully packed in separate cases of copper or wood, lined with flannel, and the scale downwards should go to 13 inches: the
scale of these barometers only reaches to 19 inches. In instruments intended for India, solidity should be considered; we want those which will do their work effectually, and are not ansious that they should be small and casily portable, as we can always here find means of carrying them. The mean height of the column, by such observations as I thought most to be depended on, is $20 . \dot{8} 3 \%$; the temperatures of the air and mercury being 73. and 65. From which, the height of Gangautri above the sea, caleulated by M. Raymond's method is........ 10319.4 By Dr. Hutron's method .......................................... . . 10306.6

Eatitude observed 27 th and 28th May, 1817.
By me, reflecting circle, alternate faces, mean by A. and
1B. Libra.................................................... $30^{\circ}$ 59ㅁ 29
Large Sextant by Berge-Lieutenant Herbert, 4 sets ditto, 35,5 By me, reflecting circle-8 circummeridional altitudes of Spica, being 24 indexes, on alternate faces...... 27 I

Mean latitude of Gangautri.. $30 \quad 59 \quad 30 \quad 5$

These were good observations, and refraction is allowed on the altitudes, according to the barometer and thermoneter; and all other corrections for precession, aberration, nutation, \&c. are applied as usual.

Tue pole star could not be seen on account of the height of the cliffs,
nor any siar to the south lower than those observed. -The same cause most unfortunately preveated our being able to observe any eclipses of $J u p i t e r$ 's Satellites here, or the occultation of the star $\bumpeq$ Libra by the Moon, and I was sorry to find that my chronometers could not be depen. ded on to shew the difference of longitude in time: though they are of the best kind, and hung in gimbals, no method of carriage that I hed then adopied could prevent them feeling the effects of the short and continually repeated jerks they received from the uneven steps, which the man who carried them on his back was obliged to make. Nothing except a staff can be conveniently carried in the hands, as they are so frequently employed in assisting the feet in difficult placeso-
'The mean breadth of the Ganges at Gangotri' was (measured by the chain) 43 feet, depth 18 inches, and nearly the same depth at the sides; as in the middle: the current very swift, and over large rounded stones.This was on the $26 t h$ May, the stream was then in one channel, but the effect of the sun in melting the snow was at that season so powerful, that it was daily much augmented; and on our return to Gargoiri, on the 2d June, the depth of the main stream was 2 feet, and it was a few feet wider (but I did not then measure the width) ; several shallow side channels had also been filled in the interval, and on the whole, I estimate, that the volume of water was doubled.

Though the frequency of the earthquakes made us very anxious io get out of our dangerous situation in the bed of the river, we resolved, as we had come so far, to leave no means untried to trace the stream as far
as possible, and accordingly set out on the morning of the 29th of May, hoping to arrive at the head of the river in the course of the day.-The two Gangotri Brahmins could not give any juformation as to how far it might be distant; they had never been higher than Gangotri', and assured us, that no persons ever went further, except the Múnshi, who appears, by the account in the Asiatic Researches, to have gone about 2 miles.

Mr. James Frazer visited Gangotrí in 1815, and was the firse Wurorean who did so.

May 29th. From Gangotri, forward ap the Ganges.
1 Pass avalanche, and fragments of rock newly fallen, and which cover the path.............. 600

2 Ascend a snow bed, which covers the river, it is about 30 feet thick.............................. 524 ditto
3 Over the snow bed, and descend to the open stream. Here a gorge of huge rocks obstructs the stream; they bave all fallen from above...... $39 \%$ ditto
N, B. The Brahmins say, they never heard of any rock or place called the cows-mouth or Gao muc' $h$, or any thing like it, either in sound or signification.-We did not see or hear of any image whatever,
4. River flows under a snow bed; a rill of water from the snow to right. High precipices on both sides, all the way
Rivgrs, Ganges and Jumna.105
5 Alternate avalanches of snow and rock recently fallen.- Pacce. ..... Degreef.
River under an avalanche of 500 feet thick, the snow hard and frozen ..... 900 ..... 80
6 In rocky bed of the river. Ascend a rock 35 feet high by climbing. River much confined, and the fall great ..... 48580
7 A great fall of the peaks.-River bed filled with fallen rocks, and difficult to pass. - The stream, a succession of cataracts. High peaks above ..... 691 ..... 80
8 Over fragments. Here the river falls out of a snow bed, in a cascade of foam: ascend the great snow bed ..... 500 ditto
9 Strong ascent of the snow bed, which is about 100 feet thick, over the river ..... 22180
10 Cascades of the river. Pass through masses of rock, difficult to climb: precipices above ..... $1000\left\{\begin{array}{l}90 \\ 60 \\ 15\end{array}\right.$
11 Cross a torrent 6 feet wide and 9 inches deep; it comes from a cleft in the peaks to the left. River here under a snow bed; from last station is a rocky path ..... 969 ..... 82
12 River turns the fout of high snowy peaks to the right: precipices quite perpendicular to the left.-Rudra Himálaya peak 97. ..... 85382
13 Finding that the head of the river must be more distant than we expected, we sent back to Gangotri for a small tent ..... 50103
14 High mural precipices rising immediately from the river
to the left: snowy peaks to the right, their summits about 6000 feet above us ..... 310 ..... 110
15 Cross the river at some falls. We leaped from rockto rock with some difficulty.-Large rill to right:present general line of snow about 200 feet aboveus. - To the right, the face of the mountain hasslipped110315
16 Bhojpatra (i.e. birch) jungle to the right with some pines, but small and stunted.-Great mural preci- pices to the left ..... 808 ..... 110
17 Begin to pass a great snow bed, from under which theriver falls in a cascade.-Heavy slips of the mountainto the right924 dilio
18 Ascend a very steep mass of snow, which covers the river; it appears to be 300 feet thick. ..... 310 ..... 360
19 Cross a rill.-To the right above us, are sharp snowy peaks 6 or 7000 feet high, at their bases is some soil, and loose stones, in which birch and small firs grow ..... 732 ..... 110
20 Up the rocky bed of the river, and here ascend a verylarge snow bed, which reaches from the top of thepeaks to the right to the river, and conceals it: theriver bed here more expanded. The feet of themountains to the right not so steep as hitherto. Tothe leff are precipices. Saw some musk deer among

# Paces. Degrecs. the rocks. - From the top of the snow bed, a noble snowy peak (St. George) appears, bearing $132^{\circ} 38^{\prime \prime}$ <br> Altitude................... $1040 \quad 5$ 

A snow peak behind us, distant about 20 miles,

$$
\text { bears. . . . . . . . . . . . ........................... . . } 28424
$$

Altitude.................. 302 1478 ditto

Total Paces 12,290

Azove the left bank of the river, and by the side of the snow bed, are some birch trees and small long leaved firs, but no more cedars.-This being the only convenient or safe place we could see, we halted here. The river is perceptibly diminished in bulk already, and we hope that to-morrow we may see its head.-The march to-day was most toilsome and rough through the loose fragments of rock which daily fall at this season from the peaks on either side to the river, in the afternoon, when the sun melts the snow.-Travellers should contrive to gain a safe place by noon, or they may be dashed to pieces.

Ir was very cold at this place, and froze all night, but we had plenty of firewood from the Bhojpatra trees.-The soil was spungy, and full of rocks.-The silence of the night was several times broken by the noise of the falling of distant aralanches,

By the barometer, it appeared, we were 11,160 feet above the sea,-Water boiled at 193 of Fahrenheit.

A cittee tent, which one man carries on his back, came to us; but in this trip, we eat and slept on the ground, and were well pleased to have got so far beyond Gangotrí, hitherto the boundary of research on the Ganges. Latitude observed.......... $30^{\circ} \quad 58^{\prime} \quad 59^{\prime \prime}$

The place we passed the night on is elevated above the left margin of the stream, being a sort of bank formed by the ruins of fallen peaks; but as the falls are not recent, nor the slope so steep, as in most places, the birch trees and various sorts of small pines and mosses have had time to fix their roots, and afford fuel and shelter.-A very long and deep snow avalanche reaches from the peaks above the left bank, down to the river, and conceals it. On the opposite side of the river, the cliffs are of great height and mural, except in one place where a tremendous fall has taken place, encumbering and obstructing the bed of the river. But these rwins are so frequent, that the traveller scrambles through them with little regard, except where the freshness of the fracture of the fallen masses of rock warns him to mend his pace, and get as soon as possible out of danger.
May 30th. Birch Tree, Halting place, forward. Ther. Sun rise, $3 \dot{8}$Set off from the middle of the snow bed.
1 A torrent 8 feet wide, 5 inches deep, joins the river. Its edges are frozen............................................ 328 ..... 132

2 Cross a high avalanche of snow, which conceals the river; it is very hard frozen. The bed of the river begins to be wider; large isicles hang among the rocks 903 ditto
3 Ford a rivulet or torrent from the left 11 feet wide. Rocky and rough.-Gradual ascent. ................... 2412 ditto
4 Gradually ascending among rocks. To the left high cliffs of granite, but not so steep as before. To the right snowy peaks, their summits about 6 or 7000 feet high, distant about 2 miles. The river bed is here about 2 furlongs wide, and full of stones. River certainly diminished in size; it is very rapid, its bed being an ascent: We are now above the line of vegetation of trees, and past the last firs.-The birches remain, but they are only large bushes; laurels also are seen, and a sortof, 1 believe, litchen; which grows in the rocks.The noble 3 peaked snowy mountain shines in our front, and is the grandest and most splendid object the eye of man ever beheld. As no person knows these peaks or their names, we assume the privilege of navigators, and call them St. George, St. Patrick, and St. Andrew: St. George bears 129, St. Patrick 13230. N. B. On going further, we saw another lower peak between St, George and St. Patrick, which we called St. David, and the mountain collectively, the 4 Saints.
5 A fall of the river of 12 feet over rocks, and a succession of smaller falls.-The inclination of the bed of the
river is considerable; it is filled with blocks of granite, white, yellow, and red, and we saw some flint. Very, difficult moving here.-Great slips of the mountain to the left
6 Most difficult.-Over masses of rock, which have fallen from above to the stream. - This station is full of peril, being a very recent slip of the whole face of the mountain to the left.-The broken summits cannot be less than 4000 feet high: blocks threaten to fally, and are indeed now continually coming down, I have not seen so dangerous a slip.-The ruin extends about half a mile; every person made the greatest haste to get past this howid place. The fracture of the rocks is so fresh, that I suspect this havoe must have been caused by the earthquake of the $26 t h$, for we heard a great crash in this direction ............................... extensive snow bed in sight, in front: it entirely cone ceals the river, but the stream is yet 20 feet wide. $\therefore .615180$
8 Snow all round, and above and below, except where is has melted just here, on a convenient flat, between the river and the feet of the mountains to the left. -All beyond is an inclined bed of snow, as far as the eye can see, and there is no frewood; so we must halt here:Call it halting place, near the Deboucke of the Ganges 447130 Proceeded forward to reconnoitre, and relurned. ......... 1034

Return to $\odot, 8$ to halt for the sake of firewood. Deduct 1034

## 7037

This is ar excellent and safe place; no peak can fall on us; 3 coma panies, or even a' battalion, might encamp here.-Sublime beyond dea scription is the appearance of the snowy peaks now so close to us. The 4 Saints are at the head of the valley of snow, and a most magnificent peak, cased in snow and shining ice, stands like a giant to the right of the valley: this we named mount Hoira. The snow valley, which hides the siver, appears of great extent to-morrow will shew what it is.

We experienced considerable difficulty in breathing, and that peculiat sensation which is always felt at great elevations, where there is any sort of herbage, though $\mathbb{I}$ never experienced the like on the naked snow beds, even when higher.-Mountaineerss who knows nothing of the thinness of the air, attribute the faintness to the exhalations from noxious plants, and I believe they are right, for a sickening effluvium was given out by them here, as well as on the heights under the snowy peaks, which I passed over last year above the Setlej; though on the highest snow, the faintness was not complained of, but only an inability to go far without stopping to take breath.

Barometer. - The tube heated, and then gradually filled with mercury, half an inch at a time, and the bubbles which were perceptible driven out by gently beating against the places they were seen at:

The mercury stood at . ................. 18.85 1
Detached thermometer..... 55
Attached dilto.......... 53
Height of the place above the level of the sea 12,914 feet.
Water boils at $192 \frac{1}{\operatorname{In}}$; which, according to Mr. Kirwan's table, answers to a barometer of 19. 5,

We are about 150 feet above the bed of the river. By day the sun is powerful, although we are so surrounded by snow; but the peaks reflect. the rays. - When the sun sunk behind the mountains, it was very cold; at night it froze. High as we are, the clouds yet rise higher. - The onlour of the sky is a deep blue.-What soil there is, is spungy.-A few birch bushes are yet seen; but a large and strong ground tree or creeper over spreads the ground, somewhat in the manner of furze or brambles; and it is a curious fact that the wood of this, is, we think, that of which the cases of black lead pencils are made, being of a fine brittle, yet soft red grain and the smell is the same as of that used or the pencils, and which has, hitherto been called by us cedar. I have specimens of this wood; it is called, I think, Chundun: I saw it on the spmmit of the Chour peak, and in the snowy regions of Kunaur g but did not then examine $1 t_{\mathrm{s}}$ - - It will be found, probably, that the Pinus Cedrus or Cedar of Lebanon is the Deodar. (or as it is called to the Westward, the Kailou), and no other.-Nor do our mountain cedars (24 feet in circumference) yield in size or durabilify;
tolthose of Lebanonsi But thischandan (misealled Cedart) Thoteven fatree; it may be called allarge creeper, growing in the nannerof bushes, chough it is very"strong, and fome of its arms are as thick essiaman's thigh:-of this, and also of the great Cedar (Deoulur) sund of other pines, I will send specimens.

## Latitude.

Lieutenant Herbert.-5 observations, by Sextant, of Meridian Altitude, Pole Star, and $\beta$ minoris.... $30^{\circ} \quad 56^{\circ} \quad 37^{\prime \prime} .5$

My observations, reflecting circle, reversed faces, $M$.
Alt. Polaris........................0...................... (0) 32.5

Mean
$30 \quad 56$
345

All good observations.- The particulars of them, as well as of all others, I have preserved.

The strata of rock, (where exposed), near the summits of the grand snowy peaks, was very nearly horizontal, as I observed it to be, last year, at the summits of the peaks above the Setlej; though in lower parts of the IImálaya, it is generally seen deeply declined, as observed between Dangul and Sookie, as well as at Jumnotri, \&c.

The colour of the high rocks on the four Saints, appeared to be of a light yellow mixed with brown or black. There being a small piece of level ground here, a primary base was measured on its longest extent; it was 319 feet; with it a longer Jase of 667.2 feet was obtained, favorably
situated for taking the heights and distances or the peaks in front. Thisbase, being but short, and no other to be had, great care was taken inobserving the angles and elevations; and they were repeated both withiafine theodolite, and reffecting instruments, (my circular instrument couldnot be safely brought beyond Reital). The angle of allitude of peak
\&. George was ..... 1407
Its height above the present station ..... 9326 ..... 6
The station above the sea, according to the barometer ..... 12,94
Height of the peak above the sea, feet. .22,240 ..... G
Distance of St. George 38,240 feet Latituade ..... 3052 ..... 291
Bearing, corrected for variation, is $132^{\circ} 20^{\circ}$ or 420 S . of $\mathrm{E}^{\circ}$
St. Patrick, height above the station ..... 9471 u
Station above the sea ..... 12,914
Distance 42,480 feet, and height above the sea, feet 22,385
Latitude ..... $30 \quad 51 \quad 35^{20} 8$
Corrected bearing S. of East $46^{\circ} 44$A sharp peak across the river;-call it the pyramid, angle of elevationtaken with reflecting circle, corrected for the distance of the eye, to themercury ......................................................... 3 . $37^{\circ} \quad$ g
Height of the peak above the station ..... 8,052
Station above the sea ..... 12,914
Height above the sea ..... feet 20,966


Latitude ................................. $30^{\circ} 54^{\prime} 46^{11} 7$
Correct bearing
7700 S . of Ex or

A rock on the great snowy bed, over which we are to pass, proved to be distant 9044 feet, and its height above this place 981 feet, the angle of elevation being 615 , which is the general inclination of the snow bed; as our progress was continued far beyond this rock, it will easily be imagined that the erest or summit of the bed, then distant 5 or more miles by estimation, must have a very considerable elevation.

We had brought very few followers onwards from Gangotrí, but Here we sent back every one we could possibly dispense with, that our small stock of grain might subsist the remainder, whe were a few trusty fellows (Musulmans), , Gorcha Sipakis, and a few Coolies, for two days or three if possible, in the event of our being able to get over the snow in front. And I sent orders to the people at Gangotrí to leave grain there, if they had any to spare, and if they did not hear of any supply coming from Reital, to make the best of their way back till they met it, and then to halt for us, and send some on to us.-Having made all the arrangements we could, on the important head of supplies, and made observations, we had leisure io admire the very singular scenery around us, of which it is impossible to give an adequate description,

Tue dazzling brilliancy of the snow was rendered more striking by its contrast with the dark blue colour of the sky, which is caused by
the thinness of the air, and at heght, the stars shone with a lustre, which they have not in a denser átinospliere', it was curious too, to see them, when rising," appear like one sudden flash, as they emerged from behind the bright snowy summits close to us, and their disappearance, when sete ting behind the peaks, was as sudden as we generally observed it to be in their occultations by the moons,

We were surrounded by gigantic peaks, entirely cased in snow, and almost beyond the regions of animal and vegetable life, and an awful silence prevailed, except when broken by the thundering peals of falling avalanches; nothing met our eyes, resembling the scenery in the haunts of men by moonlight, all appeared cold, wild, and stupenuous, and a Pagan might aplly imagine the place a fit aboderor demons- We lid not see even bears, or musk deer, or eagles, or any living creature, excent some small birds.

To form an idea of the imposing appearance of a snowy peak, as seera here under an angle of elevation of nearly $33^{\circ}$, and when its distance is not quite 3 miles, and yet its height is 805 名 feet above the station, one should reflect, that if even when viewed from the plains of Hindustan, at angles of elevation of one, and one and a half degrees, these peaks, towering over many intermediate ranges of mountains, inspire the mind with ideas of their grandeur, even at so great a distance; how much more must they do so, when their whole bulk, cased in snow from the base to the summit, at once fills the eye.-It falls to the lot of few to contomplate so magnificent an object, as a snow clad park rising to the height of
upwards of a mile and a half, at the short horizontal distance of only $2 \frac{3}{4}$ miles.

May 31st. From halting place, forward.

1 Along, and above the right bank of the river, rocks and
snow.
1445
2 Descent to the bed of the river, eaclosed by rocks. ..... 834193
3 A most wonderful scene.-The B'hágiral'hi or 'Ganges ..... 511140 issues from under a very low arch at the foot of the grand snow bed - The river is here bounded to the right and left by high snow and rocks ; but in front, oier the Debouche, the mass of snow is perfectly perpendicular, and from the bed of the stream to the summit, we estimate the thickness at little less than 300 feet of solid frozen snow, probably the accumulation of ages;-it is in layers of some feet thick, each seemingly the remains of a $f$ ll of a separate year. From the brow of this curious wall of snow, and inmmediate'y above the outlet of the stream, large and hoary icicles depend; they are formed by the freezo ing of the meited snow water of the top of the bed, for in the middle of the day, the sun is powerful, and the water produced by its action falls over this place, in cascade, but is frozen at night.-The Gangotr: Bralmin who came with us, and who is only an Gg
illiterate mountaineer, observed, that he thought these icicles must be Mahádévass hair, from whence, as he understood, it is written in the Shástra, the Ganges flows.-I mention this, thinking it a good idea, but the man had never heard of such a place, as actually existing, nor had he, or any other person to his knowledge, ever been here.-In modern times they may not, but Hindus of Research may formerly have been here, and if so, I cannot think of any place to which they might more aptly give the name of a Cow's Mouth, than to this extraordinary Debouche. -The height of the arch of snow is only sufe ficient to let the stream flow under it. Blocksor snow were falling about $u$, so there was little time to do more here, than to measure the size of the stream.Measured by a chain, the mean breadth was 27 feet.The greatest depth at that place being knee deep, or 18 inches, but more geierally a foct deep, and rather less just at the edges, Eay 9 or 10 inches,-however, call the mean depth 15 inches o- Believing this to be, (as. I have every reason to suppose it is), the first appearance of the famous and true Ganges in day light, saluted her witha Bugle march, and proceeded, (having to turn a little back to gain an oblique path), to the top of the snow bed; having ascended it, to the left.

4 Pretty strong ascent up to the inclined bed of snow. This vast collection of snow is about $1 \frac{r}{2}$ miles in width, filling up the whole space between the feet of the peaks to the right and left; we can see its surface forward to the extent of 4 or 5 miles or more, to where its it bounded, on the left, by the feet of the 4 Saints, and to the right; by snow spurs from other mountains beyond mount Moira: these last spurs raw ther overtop the feet of the Saints, and to them, and to the place where we judge there is a ridge, is all ase cent over snow.-Pyramid peak 235 -M Mount Moira $80^{\circ}$-St. George $129^{\circ}$-St. Andrew $136^{\circ}$.
Ascent of she sume kind-generally acclivity 7 , but we pass over small hollows in the snow, caused by its irregular subsiding. - A very dangerous place; the snow stuck full of rubbish, and rocks imbedded in it.-Many rents in the snow appear to have been recently made, their sides shrinking and falling in.' A man sunk into the snow, and was got out not with out some delay. The bed of the Garges is to the right, but quite concealed by the snow ............... 509 do.
In high hope of getting on to what may be at the top of the acclivity, we have come on cheerily over the hollow and treacherous compound of snow and rubbish, but now with bitter regret, we both agree that to go on is impossible! The sun is melting the snow
on all sides, and its surface will not bear us any longer. I have sunk up to my neck, as well as others. The surface is more and more ragged, and broken into chasms, rifts, and ravines of snow with steep sides.-Ponds of water form in the bottoms of these, and the large and deep pools at the bottoms of the snow hollows, and which were in the earlier part of the day frozen, are now liquid. It is evident, from the falling in of the sides of the rents in the snow, that there are hollows below, and that we stand on a treacherous foundation.- It is one o'clock, and the scene full of anxiety and awe. The avalanches fall from mount Moira with the noise of thundef, atid-we fear our unsteady support may be shaken by the shocke, and that we may sink with it.

$$
\begin{array}{llllll}
\text { St. George } & 130^{\circ} & 45^{\circ} & \text { altitude } & 17 & 40^{\circ} \\
\text { Pyramid } & 255 & 33 & \text { do. } & 26^{\circ} & 49
\end{array}
$$

Inclination of the snow bed about 7 , what appears the highest part of snow bed, ahead $155^{\circ}$-Allitude $\%^{\circ}$ No time to take more ................................... 1427 155

And here we were obliged to return! Had it been possible to have got across the chasms in the snow, we would have made every exertion,
so anxious were to get forward; but onward, their sides were so steep, and they appeared of such great depth, that. I do not think it would be possible terss them, (this year at least), even if the snow was not, as at this brourgisoft, and the bottoms of the chasms filling with water. Be that as it may, they are now utterly impassable. At this season snow must fall here, whenever it rains below, so that it does not acquire such hardness on the top, as it does on the avalanches. we have hitherto passed, where no new snow at present falls.-We now set out on our return, and not too soon, as we found, for the snow was so soft, and the increase of the water so great, that though we went with the most possible expedition, it was only by $2 \frac{1}{2}$ hours hard labour of wading. and fleundering in the snow, and scrambling among rocks, where they. would give a fooling, that we reached the turf, tired and bruised with falls, and the skin taken off from our faces and hands by the sun and नrying wind of these elevated regions.

Ir now remaing to give some account of this bed or valley of snows' which gives rise to the Ganges. It appears that we passed up it, some what more than a mile and half.-From our last station, we could see onw wards, as we estimated, aboul 5 miles, to where there seemed to be a crest or ridge of considerable tievatio:, though low when compared with the great peak which flanked it; the general slope of the surface of the snow valley was $7 \%$, which was the angle of elevation of the crest, while that of the peak St. George, one of those which flanked it to the left, was $1 \%^{\circ}$ 49.- In the space we had passed over the snow bed, the Ganges was not to be seen; it was concealer, probably, many hundred feet below the surs
face; we had a fair view onward, and there was no sign of the river, and I am firmly convinced that its first appearance in day is 'at the dee bouche thave described; perhaps indeed, some of those various chasms and rents in the snow bed, which intersect it in all sovt of irregular directions, may'occasionally het in the light on some part of the bed of the stream, but the general line and direction of at could only be gruessed at, as it is altogether here far below the ibroken snowy surface. The breadth of the snow valley or bed is about a mile and a half, and it; length may be $6 \frac{1}{2}$ or 7 miles from the debouche of the river, to the summit of the slope, which terminated our view, as to the depth of the snow, it is impossible to form a correct judgement, but it must be very great.- It may easily be imagined, that a large supply of water is furnished at this season, by the melting of this vast mass in the valley as well as by thmelting of that of the great peaks which bound it. From their bases; torrents rush, which cutting their way under snow, tend to the centro of the valley, and form the young Ganges, which is further augmented by the waters which filter through the rents of the snow bed itself. -In this manner, all the Himalaya rivers, whose heads I have visited, and passed over, are formed; they all issue in a full stream from under thicls beds of snow, and differ from the Gangees, inasmuch as their streams are less, and so are their parent snows.-On our return down the snow valley, we passed nearer to its North side than in going up, and saw a very considerable torrent cutting under it from the peaks; this was making its way to thentre; at limes, we saw it through rents in the snow, and at others;only heard its noise; as there must be several more such feeders; they wrill be fully sufficient to furm such a stream as we observa
ed the Gionges to be at the debouthe, in the space of 6 or 7 miles; ${ }^{4}$ Iam fully satisfied, that if we could have gone further, that we should not have agaim seen the river, and that its appearanceat MAhádévA's haits, or whatever we may choose to call it, was the real and first debouche of the B'hagirathio-All: regret, is, that we could not go to the ridge, to see what was beyond iu' Isuspect there must be a descent, but over long and impassable wastes of snow, and not in such a direction as would lead direct to any plains, as the couse to bring one to such plains would be to the N. East or North, whereas the line of the rivers course, or rather of the ridge in front, was to the S. East, parallet to the run of the Himallaya, which is generally from S. E. to N. W. Immediately in front of the ridge, no peaks were seen, but on its S. E. flank, and at the distance of about 18 miles, a large showy peak appeared, so that I think there can be no plain within a considerable distance of the S. E. side of the ridge $\%$ if there be streans from its other side, they must flow to the S. East:-After all, I do not know how we should have existed, if we had been able to go to the ridge, for we could not have arrived there before night, and to pass the might on these extensive snows, without fireweod or shelter, would have cost some of us our lives, but of that we did not then consider muct, (if we could have gone, we would). We had only a few trusty men with us, and a short allowance of grain for them, for this and the following day, and had sent orders to the people left at Gangotri, to make their way back towards: Reital, leaving us what grain could be spared, and to forward on what they might meet, as I expected some from Reital, from whence we were supplied during our absence from it, of altogether 28 days.-I cannot suppose that by
this way, there can be any prachicable of wsfful pass to the Tarlarian districts, or doubtless the people would have found it ont, and used it, as they do that up the course of the Jahnavi. White I give it as my opinion, that, under any circumstances, the crossing of the ridge must be difficult, I would by no means wish to be understood to assert, that I think it impossible, under more favorable circumstances, andid in a year when less snow has fallen than in the present; but i seriously declare, that situated as we were, it was not possible for us to go further than we did, and that it was with great difficulty we got back.
Ir is now to be considered, if the supplies of water, produced as above described, are sufficient to form a stream of 27 feet wide, and 15 inches (mean depth) at the deboucke.-It has been stated, that at Gangoter, the breadth of the river on the 20th May, was 43 feet, and its depth 18 inches.-The distance thence to the debouche was $22,6 \% 0$ paces, which Ireckon about 11 British miles. In that space, it received some supplies, as mentioned in the notes, but they were not abundant. $-\infty$ Thus the quantity of water is diminished nearly one half, but it is to be remembered, that on our teturn to Gangotri, on the 2d June, the bulk of the river was considered as being doubled, it beiag 2 feet deep, and also much wider, so that on the 31 ist May, we may suppose it to have been 21 inches deep, and perhaps 48 feet wide at Gangotrí. It is with this mean size, that the comparison of the diference of its bulk at Gonegotri, and the detouche, must be made; the proportion thus is, that the bedy or quantity of water would be at Gengotri almost treble to that at the debouctise; but allowing it to be only double, in this 11 miles, it will be evident, that in 5 or 6 miles further, there can be litue
or no water in the bed, under the snow, and, consequently, that the most remote rill, which contributes under the snow, to the first formation of the Ganges, cannot be more distant than the ridge; so I think it may be allowed, that such first formation is on the hither side of the ridge, and not at any lake, or more distant place beyond it.

Indeed, considering the large supplies which the snow valley furnishes, I rather wonder that the stream was not larger, when I measured it at the debouche:-Whether there are any boiling springs under the snow, as at Jumnotri, I do not know, but suppose there are not, as I did not see any smoke; a steam, however, there may be, and the steam may be cono densed ere it can appear. -I imagine, that the season of the rains would be, in one respect, the most proper to attempt the passage of the great snow bed; it may at that time be reduced in thickness, but I have no idea that it ever melts away; yet, in the rains, it perhaps will not be possio ble to ford the river above Gangotri, which must frequently be done, if the smaller avalanches, on which we very frequently crossed it, are melted. In the rains also, there must be greater hazard from the falling of the rocks, and slips of the mountain, for the melting snow forms many rills, which undermine the rocks, and set them loose, and it is not possible to avoid a large fall of the mountains side, if one should unfortunately be in the line of its direction, when it comes down.

I mave preserved specimens of the rocks of which these peaks are composed, also of the different sorts of pines which grow at their bases. Above Suc'hi, and Jhala, the country is not inhabited, nor is it habitable
beyond those places, except at the small village of Durati, whick is now deserted. -Tuwarra, Suc'hr, and Jhala, are very small and ruinous villages.-Reital is a pretty grood village of about 25 houses, as is Salung, and there are 2 or 3 more in that neighbourhood.-I found the inhabitants civil and obedient.

The peopie of Fowaen are, ingeneral, much inferior in appearance to those of Jubul and Sirmour, and the more western mountains; indeed, with few exceptions, they are an wely race, both men and women, and extremely dirty in their persons. They complain much of the incursions of the banditii from the western parts of Rowaen and Busahir, who carry off their sheep in the rains; but, from what I can learn, they in turn plunder their eastern neighbours of the Cédar-nát'l districts, and they pride themselves on the long journeys they make in their sheep stealing expeditions.-The proper time for those forays is the latter end of the rains, when the snow in the defiles is much reduced. - The women have not here, as to the westward, a plurality of husbands. I saw no fire arms among the inhabitants, nor swords or war hatchets; their weapons are bows and arrows.-The climate of Reital, is, at this season, very pleasant, and the price of grain is not bigh, but it is not abundant. -The corn is cut in the beginning of June.

No volcanos were seen or heard of in these mountains, whose composition is granite of various kinds and colours.-No shells or animal remains were seen-The magnetic variation was small, and differing little, if at all, from what it is on the plains of the upper provinces. it is
from $40^{\prime}$ to $i^{\circ}$ and $2^{\circ}$ according to different needles, and is casterly, by which I mean, that the variation nust be added to the magnetic azimuth. The diurnal small changes in the barometer were perceptible, the mercury always falling a little before noon, as in the plains

Having received new thernometers from Calcutta, both long and short, If found that they gave the same boiling point, but the thermometer I had last year, in Busalir, \&c. shewed the boiling point $\stackrel{\circ}{2}$ or $\stackrel{\circ}{2} \frac{1}{4}$. below the new lones.-I always suspected the thermometer, but had not then a better. It boiled in the Panwei pass in the Kunaur and Busathir snowy mountains at 188 at ney camp a little above the lower line of snow, on the 24 th June last, se that it should have been $190^{\circ}$, or $22^{\circ}$ lower than at the sea side. Bears abound in the higher mountains, also the Goorul or Boorul, an animal between the deer and goat, and the Plueir, a larger animal of the same kind; I have preserved the skin, horns and

冫es of the head of one shot near Jumntri. Near the villages, where sniuw lays a great part of the year, there are abundance of the Monaul Pheasants and Chakars. In the lower mountains, there are black partridges, and tigers, leopards, and bears. I never saw any snakes in the cooler regions.

Ir was remarked above, that the snow on the great bed was stuck as it were with rock and rubbish in such a manner, as that the stones and large pieces of rock are supported in the snow, and sink as it sinks; ns they are at such a distance from the peaks, as to preclude the idea that they could have rolled down to their present places, except their
sharp points had been covered, it appears most likely that the very weighty falls of snow, which there must be here, in the winter, bring down with them pieces of rock, in the same manner as a larger snow ball would collect gravel, and carry it on with it in its course.-Masses of snow, falling from the high peaks which bound the snow bed, if they chanced to collect more, and to take a rounded form, would have a proo digious impulse, and might roll to the centre of the snow yalley, loaded with the pieces of rock they had involved.

Ir is not very easy to account for the deep rents which intersect this snow bed, without supposing it to be full of hollow places.-It struck us, that the late earthquakes might have occasioned some of the rents. $-\mathbb{I}$ never saw them before on other snow beds, except at Jumnotri, where they are occasioned by the steam of the extensive range of boiling springs there; perhaps, there may be such springs here also; they are frequent in the Himálaya, and one might suppose they were a provision of nature to insure a supply of water to the heads of the great rivers, in the winter, when the sun can have little power of melting the snow above those deep recesses.

I will now proceed to give some account of the course of the river Jumna, within the mountains, and of its spring at Jumnotri, which I also visited this year ; the above remarks, respecting the Ganges, having already swelled this paper to too great a bull, I will make those, regarding the Jumna, in as few words as possible.-In the maps published ten years ago, the Jumna is laid down as having a very long course

Trom the latitude of $34 \frac{5}{2}$; from what authority, it is difficuit to guess, for much as has been surmised and written respecting the head of the Ganges, I cannot find any accounts of that of the Jumiza.-It was not known, until the year 1814, that the Jumaa, properly so called, was a comparatively small river above its "junction with the Tonse in the Du'n, and I believe the existence of the latter river, though fully treble the size of the Jumna, was uniknown to Europeanis.

Tree junction of the Tonse and Jumna takes place at the N. W. end of the Dinn valley, in latitude $30^{\circ} 30^{\prime}$, where the large river loses its name in that of the small one, and the united stream is called the Jumna. The course of the Jumna from Jumnotri, which is in latitude $30^{\circ} 59_{3}$ being generaily south $50^{\circ}$ west. It is fordable above the confluence, but the Tonse is not.-Not having yet visited the sources of the Tonse, I am not certain whether it rises within the Himálaya, as the B'hágirathí does, or at its S. W. or exterior base like the Jumna; but the latter I bei.: ve to be the case. I apprehend, that three considerable streams, which, like the Jumna, originate from the south faces of the Himálaya, ia the districts of Barasa, Leulowari, and Deodara Kowarra, join to form the Tonse; and it receives a considerable accession of water from the Paber river, which I imagine to be equal in size to any of the three above-mentioned feeders. Respecting them, I have at present only native information to guide me, but of the Paber I can speak with more confidence, for, when in June 1816, I penetrated within the Himálaya, by the course of the Setlej, I found that the north bases of many of the snowy peaks, seen from the plains of Hindustan, were washed by that river.-Its K k
course, in the province of Kinnaur, in latitude $31^{\circ} 31^{\prime}$, and longitude $78^{\circ} 18^{\prime}$ being from east $25 \mathrm{~S}_{0}$ to 25 to the N . of west. In this position, the Setlej is bounded botb to the N. and S. by high and rugged snowy mountains, from which many torrents descend, and increase its bulk.-Leaving the left bank, and bed of the river, I ascended the snowy range, of which it washes the north base, and crossed over it on the 21 st June 1816, at 40 minutes past $110^{9}$ clock, in the forenoon, during a heavy fall of snow, being the first European who effected a passage over the grand Himálaya ridge in that direction.

On surmounting the crest of the pass, I found that the Indravatin river, which is a principal branch of the Paber, originated from the snows, on which I descended, on the S. W. or hither side of the ridge; and I followed its channel, to the place where it joins the Paber, which riyer must have its beginning, in like manner, on the same side of the ridge, as I was informed by the people of the country it had, and I am nearly certain it is the case; and it is most probable, that all the streams whin ${ }^{2}$. form the Tonse, do, in like manner, descend from the south west side of the fronting snowy range, the north east base of which is washed by the Setlej, as above mentioned.

However, I intend to explore the sources of the Tonse, as well as of the Setlej, and Jáhnavé rivers.-But to return to the Jumna.

The route from its confluence with the Tonse, in the Dinn, is thus;to Calsi four miles,-a large village immediately within the mountain of

Jansar, of which district it is esteemed the capital.- It is situated between two high and steep mountains, and on the Omla, a small river which joins the Jumna.-Calsi is a place of some lithe trade, as the people of the neighbouring mountains bring to it their productions, and, exchange them for cash to pay their rents, and a very small quantity of the produce of the plains.-On the march, the Jumna is forded above its confluence with the Tonse. Carriage cattle may go to Calsí, but further within the mountains, every article is carried on men's backs.Latitude of Calsi $30^{\circ} 31^{\prime} 24^{\prime \prime}$.

> Calsi, to Bairat Forto

Total distance 24,511 paces.
6000 paces of exceedingly steep ascent of the mountain, on left bank of the Omla;-2600 easier, to the village of Khuny on the ridge; remainder, along the mountains side, with occasional ascents and descents, to the foot of the peak of Birat, which rises conically above the ridge $\{1800$ paces of the steep ascent up it to the fort, which is a small double enclosure.-It was abandoned by the Gorc'ha garrison, on the approach of a force under Colonel Carrenter.

The height of Birat above Seharanpur, (which is visible from it), is 6508 feet; it commands a noble view of the snowy mountains, and the various intermediate ranges, as well as of the Dún valley, and the plains on both sides of the Jumna.

Invalids from the plains, requiring a change of climate, may find it at

Birat.-In the winier, the fort is almost buried in "snow, which rea mains in shady places, and on the northern side of the peak, till the begimning of April; but snow selldom falls later than the last week of March, at which season, while I was in the fort, there was a shower which covered the ground to the depth of 2 inches:-the peak is a bare slaty rock, with some quartz intermixed.
29th March, 181\%-Birat to Murlang.

Tolal distance ${ }^{m} . \stackrel{f}{f}_{6}^{6} .-2 .{ }^{m} .5$, narrow path along the mountain's side, then'a steep descent of ${ }_{2} \mathrm{~m}^{\mathrm{f}}$ to Murlang, a small village in a glen, on the Silgad rivulet, which falls into the Jumna three mriles to the east.-No grain here. Lat, observed $30^{\circ} 36^{\prime} 53^{\prime \prime}$.
Thermometer at noon 78. It was yesterday, at noon, at Birat $50^{\circ}$.
$30 t h$ March.-Murlang to Cot'ha.
Total distance ${ }^{m} 9.5$. -Proceed $2 \frac{\mathrm{r}}{2}$ miles down the bed of the Silgrad to the Jumna,-then leave it, and cross a ridge, and go up the bed of the Jumna, to the confluence of the Cunti river, which joins it from the Keinah peak to the west.-That river is about 60 feet wide, and $1 \frac{1}{2}$ and 2 feet deep. The Jumna is 90 feet wide, 3 to 5 feet deep, rapid, and not fordable. -The rest of the path is a long ascent of the mountain, above the right bank of the Jumna, to Cot'h ha , a village of 10 houses, about 3000 feet above the level of the river:-A fatiguing march,-heavy rain,-no grain here.

## 31st March.-Cot'ha to Laliha Mańd'al.

Total distance $\stackrel{m}{8} . \frac{\mathrm{f}}{7}$.-For $\mathrm{m}_{\mathrm{m}}^{\mathrm{m}} \mathrm{f}_{\text {, }}$, the path lies generally along the side
of the mountain, with occasional strong ascents and descents; ${ }^{m} .5$. of very steep descent into a dell, the rest lighter descent, flat and ascent from a rivulet to Lak'ha Maridal, on the right bank of the Jumna, and about 300 feet above it.

Lak'ha Mand al is a place of some celebrity, in. Hindu story, as having been one of the temporary residences of the Paidus; and tradition says, that formerly there were a great number of statues and, temples here, but II imagine the greater part to have been buried by the slip of the side of the mountain, at the foot of which it is situated.-Several pieces of cornices, entablatures, and other ornamental fragments of buildings, are seen projecting above the soil, which buries the remainder; they are of black sione, and the carving of the ornaments is very well executed. There are also two statues of Bhím and Arjun, of the size of life, which are half buried in the soil; and a prodigious number of small idols are deposited in a little temple, which is the only one now remaining, and which does not appear to be of any remote antiquity. The ignorant Brahman could give no account of the builder; he declared, as they all do, when consulied on such subjects, that it is not of human workmanship, but was built by Phís, countless ages ago.

Ir does not appear that pilgrims now resort here; the place is nearly desolate; it is surrounded by high rọcky peaks, and may have been chosen as a.fit seat for gloomy and recluse superstition.

Within the temple, there is a large slab of blue stone, inscribed with $L 1$

Hindu characters; I cleaned it, and took off a reversed impression, as well as circumstances would allow, and sent it to Colonel Mackenzie.

Latitude of Lak'ha Mandal $30^{\circ} 43^{2}$ 24.".

## Lakiha Mańdal, to Bancaulí.

Distance 3. ${ }^{m}$. -Gradual descent $1 \frac{1}{2}$ miles to the Ricnar river, which is the boundary between Sirmor, and the Rewaen district of Gurhwal.It has a course of about 10 miles from the N. W. and joins the Jumna here.-From the river, a very strong ascent of $1 \frac{1}{4}$ mile up the mountain, to a crest called Génd́áa Ghát; three obliquing to Bancauĺ, a village of 20 houses, with a temple;-it is on the mountain's side, and about 3000 feet above the Jumna.-No grain to be had here, as at other places;-I planted potatoes. Rainy weather;-no latitude.

$$
3 d_{\mathrm{m}} \text { April, 1817.-Bancauli, to Paunti. }
$$

Total disiance 11 . 1 by the wheel; in paces 23,108.-To the bed of the Jumna ${ }_{3}^{\mathrm{m}} 3^{\mathrm{f}} 3^{\mathrm{m}}$ mostly oblique descent, though steep in some places above the right bank of the river. Here are very high and steep precipices, from which large blocks of granite have fallen into the bed of the river, which forces is way through and over those obstructions with much violence and noise. After passing over the rocks by the river side for half a mile, we leave it, and climb the right bank, by an exceedingly sleep ascent, to the Tocne Gháti, which overhangs the stream, and is about 1000 feet above it.-Hence, descend a mile to the Camaulde river; cross it on trunks of trees laid across, a little above it's junction with the Iumana.

The Camaulda is the largest river which the Jumna receives above the confluence of the Tonse; its course is from N. $10^{\circ}$ west, down the Rama Seráí district, which is a small valley, and is reported to be in some places a mile wide, but it is now overrun with jungles, full of wild beasts.-The Camaulda, now swollen by the rain, is about 70 feet wide, and $2 \frac{1}{2}$ feet deep, and very rapid. Immediately on crossing it, the country up the Jumna assumes a more pleasing appearance; the mountains which bound it, though very lofty, do not rise so abruptly, and several small villages are seen on their lower slopes. On the right bank of the river, there is a slip of level ground 3 to 500 yards wide.-The summits of the mountains are covered by cedars and other pines, and the snow yet lies on them. Proceed by the river side to Pauntí, a village of 20 houses, pleasantly situated about 400 feet above the Jumna.-The march was long and fatiguing, as it rained the whole way; the loaded perple did not arrive till after dark.-At this village, I got supplies of grain.The country I have passed through from Calsi is nearly deserted, on aco count of famine, caused by the crops of last year having been destroyed by the hail, in October--Aware of this circumstance, I have brought grain with me from Calsi, and subsisted my followers with it.

Latitude of Pauntí 30 48 0 ö.

## 5th April, 181\%.-Pauntí, to Gíra.

Total distance ${ }^{m}$. $1 \frac{\mathrm{f}}{\frac{1}{3}},-2 \frac{\mathrm{I}}{4}$ miles parallel to the Jumna, and descend to its bed, where the stream from the Banaul! glen joins it.-Leave the $J u m n a$, and proceed three miles N. W. up the Banaul river.-Then ascend the south face of the mountain to Gira, a village of 10 large
houses pleasantly simated, and sheltered from the northern blasts. This district of Banaul is about seven miles in length; the N. W. end is closed by a high rocky mountain, where the stream arises, which waters the bottom of the glen.-Several villages are seen placed in advantageous situations on the sides of the mountains, the soil of which is fertile; wood, water, and grain are abundant.

As I learnt that much snow yet remained on my route forward, I halted here some days, to give it time to melt, and to refresh my people, who were harrassed by the journey from Calsi, for it had rained every day, and they had been sparingly and ill fed, and also to take the ratcs of my chronometers.-I took two immersions of Jupiter's satellites, as follows:

The same was observer, at the Madras observatory, at................. $14 \quad 49 \quad 35 \quad 8$

Differences of the meridians ....... o7 $40 \quad 3$
Longitude of Madras............... 52114

Ditto of Gíra 5 13

33 y
The observations, at both places, are noted as clear and good.
Rivers, Ganges and Jumna.137
10th April,-1st Sat. Observed immersion, but nota goodobservation, mean time..........., 140927
Same at Madras observatery ..... $14 \quad 17$ ..... 254
07 ..... 584
521 ..... 14
Longitude by Ist Sat ..... $\begin{array}{lll}5 & 13 & 15\end{array}$
Ditto 2 d ditto ..... $13 \quad 33 \quad \%$

Mean by immersions. ..... | $\frac{\text { n. }}{5}$ | 1. | 13 | 24 |
| :--- | :--- | :--- | :--- |

Latitude of Gíra ..... $30 \quad 52^{\prime} \quad 08$
12th April, 181\%-Gíra, to Thánno.
Total distance 8 miles. - Down the N . side of the glen, and passthrough the villages of Bisát and Déváli, to Dakiát, a large village, 4. 6.-Pioceed parallel to the Jumna, but above it, ${ }^{\mathrm{m}} 1.6$, and descend to the Badál river, which comes from a glen similar to that of Banál, but is longer, and contains more and larger villages.

The river joins the Jumna here; it comes from the Cédára Cánta, a large mountain covered with snow, and its course is from N. $15^{\circ}$ west; breadth about 40 feet, depth $1 \frac{1}{2}$ and 2 feet. Proceed $1 \frac{3}{2}$ miles further to Thánno, a small, village, 400 feet above the right bank of the Jumna.

The road today, chiefly on a gradual descent; path, good and plea-sant.--The Jumnotri snowy peaks, seen up the river, have a noble appearance; the eastern peak bears $56^{\circ} 17^{\circ} \mathrm{N}$. E:-its altitude $816^{\circ}$.

Thánno appears to be 4083 feet above the level of Seharanpur. Latitude observed $30^{\circ} 491212$.

## 13th April, 1817.-Thámno, to Catnaur.

Total distance $4^{\text {m }}$. 2.-S.eep descent to thie $\Im_{u m n a \text {, and cross it on a }}$ Sangha, which consists of three small spars and some twigs bound to gether, and laid across in the manner of a hurdle.-The Sangha is in two portions, being laid from rock to rock; one is nine paces in length, and the other seven, the breadth of the river being about 40 feet; but it is deep, being confined between the rocks, trrough which it falls like a cataract. The water nearly touches the bridge, which is a bad one.-Some of my goats fell through it, and were drowned.-Above this place, the bed of the Jumna is much inclined; the stream bounds from rook to rock, and, for the most part, is a series of small cataracts.

A mile beyond the Sangha, cross the Silba, a small river from the glen of that name, and proceed to Catnaur, a small village 500 feet above the left bank of the Jumna; up the Sillba glen is a convenient pass over the ridge, which separates the Ganges and Juma.

The path today chiefly ascent and descent, and very rough and steep in most places; and hence, forward, the features of the mountains bear a harsher appearance, there being generally mural precipices tising
from the bed of the Jumna to the height of 1500 to 2000 feet, either on one side or the other. - The summits of the mountains all round, are, deep in snow.-A stream from a peak called Dallia Cursu, joins the Jiamna here, from the S. E.
4. Latitude observed $30^{\circ} 5135^{2}$

As no grain was to be had here, I was obliged to march, in the aftero noon, to a very large village called Páli, situated up a wild glen; this was a good deal out of my route.-The inhabitants of Pali, and the neighbouring villages, have been noted for a rebellious spirit against both the Gur?huat, and Gorccha governments.-They had cut off several parties of the Ráaja's troops, and surprized and destroyed a complete company of Gorc' kas , several years ago, for which they were punished by - a force sent against them under the brave chief $B^{\top} h a c t i T^{\top} h a ́ p a$. On my arrival, they refused to sell me any supplies, and $I$ expected to have had trouble. However, towards evening, we came to a better understanding, and I got abundance of grain.-The village consists of aboutififty large houses; the inhabitants are stout and hard featured, and the women generally have light complexions, and agreeable countenances.-In the morning, I went down the glen $1 \frac{1}{4}$ miles, and then along the right bank of the Jumina, but high above it, by a difficult and very unpleasant pathway overhanging it; in one place, I was obliged to go with great caution, and! bare footed, for a false step would be fatal.- The precipices, on the opposite side of the river, are quite perpendicular, and on this, exceedingly; steep. After passing the worst part, descend to $0 j \% h a$ Ghur, a hamlet of three huts only, in a dismal situation, at the feet of steep and loftv cliffe, -
the rocks hurled from which, by the earthquake of 1803 , buried a small fort and village, which once stood here:-dreadful mementos are seen in, these mountains, of the effects of that cataströphe. Under Oj'ha Ghur, a stream falls into the Jumna, and several cataracts are seen falling among the surrounding precipices.-There are some hot springs at the bed of the Jumna, which is 400 feet below the hamlet.

Latilude observed $30^{\circ} 54^{\prime} 47^{\prime \prime}$ 。

15th April, 181\%.-Oy'ha Ghur, to Ráná.
Total distance ${ }^{\text {min }}$. 5 .-In paces $91,815$.
2655 paces along the mountain's side, and descent to the Jumaca. Cross it on a Sangha of 2 small spars; its length 20 feet, breadth about $2 \frac{1}{2}$ feet.-The river rushes with great violence under the Sangha, and nearly touches it.-T The general breadth of the stream is greater, but it is here confined between two rocks.

1200 paces, by the margin of the riverg the rest, for the most part, ascent, and in some places wery steep and rigged.
(Háná is la small village of lt houses, about 800 feet above the left bank of the civer, on the slope of the mountain;-the general lower line of snow on it, does not appear to be more than 1000 feet above the village. The oppositelbank of the river is composed of yellow granite precipices, rising murally from the stream to the height of about 2500 feet, or more. -The courses of the rock are disposed almost horizontally, as high as 1000 feet above the river: llout, towards the
summits, they appear to incline in an angle of about $35^{\circ}$, the apess being to the south west.-Heavy storms of hail and thander.

$$
16 \mathrm{~h} \text { April, 181\%.-Rúná, to Banaása. }
$$

Distance 7839 paces.
Ascents and descents to the small village of Bári, 2356 paces -68 paces further descent to the Bumba Ggngai river, which has a cougse of about 8 miles from the snows to the right in it is in 2 streams, each 8 paces wide, and-I8 inches deep, and joins the Jumas - 1480 paces of exceedingly steep ascent, the wemander, uscents and descents, and diffeultroad. Cross the Jumina on à Satighe, and also the Bamása river, which is about two thirds of its size, and joins it here.- Ascentito ibanoásct, a smull village, at the foot of a rocky mountain, a fall from which, last year, destroyed half the village. Angle of altitude of the nountain $40^{\circ} 55^{-A m o n g}$ the cliffs, and on the summit, I ubserved, with a telescope, many of a species of aninal, peculiar to these elevated regions; it is called Pheir, and as a mountaineer in my service succeeded after many toilsome chaces in shooting one of them, I can give a description of its dimensions.

[^28]II preserved the skin and the bones of the head and horns, and pree sented them to the Most Noble the Governor General, who, I believe, sent them to Sir Josepri Banks.

The face of the animal, which was a male, resembles that of the Nil Gáo. -The horns are large, the lower part of them stands nearly erect from the forehead, but the upper half bends backward. The hoofs, cloven. - The colour, that of a camel or lion, and the long hair about the shoulders and neck, somewhat resembles a lion's mane.-The fiesh appeared coarse, and an unpleasant musky smell exhaled from it. The Hindustánis would not touch it, but the Gorcha siprihis, and moun. taineer Coolies, eat it with avidityo It is remarkable, that those people will not eat mutton. The Pheir is a gregarious animal, and appears to subsist on the short herbage at the edge of the snow- Whe chace of it, in its haunts on the cliffis and precipices, is most difficult and dangerous; but, in the depth of winter, when the snow drives them down to the villages, the people hunt and kill them more easily.

In this neighbourhood, springs of hot water are very numerous; they are seen bubbling up among the rocks in various places near the rivers.The heat of the water is too great to bear the hand in it for many mos ments; but, having broken my long scaled thermometer, I could not ascera tain its precise temperature.-The water has litlle if any taste. - About hakf a mile, above its junction with the Jumna, the Bannása river falls from a precipice of yellow and rose coloured granite, of 80 or 90 feet high, in a noble cascade.-The breadth of the stream is about 15 feet,
and it falls into a deep basin, which it has worn in the rock, with much noise.

Tue stream is caused by the molting of the snows on the heights above.

From the village, two of the Jumnotri peaks appear towering above the clouds, with sublime effect. Angle of altitude, (taken by reflection in mercury), of the east peak $15^{\circ} 3445^{\prime \prime}$, of the west $17 \quad 10 \quad 10^{\prime \prime}$.

16th April, 1817.-Banarása.

The same look place at Madras observatory, at 17 I7 23 31

Difference $07 \quad 26$ 1
Longitude of Madras.............. $5 \quad 21 \quad 14$

Do. of Bannása ................. $5 \quad 13 \quad 47 \quad 9$

Tue beginning of twilight made the observation not so grod as it would have otherwise been.

Latitude observed $30^{\circ} 55^{\prime} \cdot 50^{\prime \prime}$ 。

This is not a good latitude. The weather was cloudy and stormy, with showers of sleet.

## 17ih April, 181\%.-Bannása, to Cursálí.

Thermometer at sunrise 33 .
Descend to the Jumna, and cross it on a plank $12 \frac{1}{2}$ feet long, and again on a plank of 10 feet;-depth of the water $2 \frac{1}{2}$ feet ;-beds of frozen snow extend to the margin of the stream. A most laborious and steep ascent of 675 paces, whence gradually descend, and cross the Jumna on a small Sangha, where it receives the Imri rivulet from the snow, whence it originates, about $1 \frac{8}{2}$ mile to the end. It is less than the Jumna, which is now reduced to the rank of a rivulet. Strong ascent to the village of Curśátá.

Tutal distance 4078 paces.

STormy weather and very cold, driving showers of sleet and raing path, bad and slippery.

Ther village of Cursáíc contains about 2 substantial houses, and is siluated at the immediate feet of the $\begin{aligned} & \text { Tumnotri snowy peaks; but they }\end{aligned}$ are not visible, as the near and steep part of the base obstructs the view.The situation of Curśat is wery peculiar, and one would hardly suppose that people should choose to live in such a remote and cold place. It is the latter end of April, and yet, daily slight showers of snow fall, and the remains of drifts yet lie in shaded places in the village.- ${ }^{\text {Bl }}$ y the sides of the Imari and Imma, there are several spots of fat ground, on which the inhabilants cultivate grain enough for their subsistence. - To the west, north, and east, this litlle secluded place is bounded by the lofty cliffis af the Himálaya; and to the south, it is sheltered by a mountain, the north
face of which is not so steep, and it is clothed with trees. - All those are at present deep in snow, which reaches down to the level of the two streams; yet I found the place by no means an uncomfortable abode, for the heights near it, shelter it from the violence of the winds. - The sun is pleasantly warm in the middle of the day, and the progress of vegetation is rapid, in proportion to the length of the winter.-The rocky and snowy defile called Jumnotri, where the Juman originates, is seen in the direction of N. $42^{\circ}$ east,-Distant 3 miles.

$$
\text { Latitude of Curśálí } 30^{\circ} 57^{\prime \prime} 19
$$

17th April, observed immersion of Jupiter's Ist satellite,

$$
\text { mean tine.... ..... ............. .... .... .. .... } 16 \text { } 03
$$

It appears no observation was obtained at Madras, on this day.

During three days, I attempted to get some sets of lunar distances, and also transits of the moon over the meridian, but was constantly prevented, by clouds, from doing any thing satisfactorily.

21st April, 1817.-Cursále, to Jumnotri.
I Flat, along the village fields; here climb a steep rocky corner, above the river's bed. Jumnotri nearly $4130^{\circ}-C h a^{\prime}$ mountain, over which there is a pass to Suc'hi on the Ganges, practicable in the rains, (at present it is blocked up by deep snow), $128^{\circ} 30^{\circ}$.......................................... 0
2 Steep descent through snow 1 to 5 feet deep, then flat 000148

3 Fields-Slight acclivity, snow paiches;-abundance of pheasants here, chiefly of the kind called Morál $0 \quad 0 \quad 04$
\& Rough and rocky:-descend to the Jumna, which in several places flows under beds of snow 25 or 30 feet thick.-An overhanging precipice to right.-A torrent, called the Bandiali, $\frac{y}{2}$ the size of the Jumna, joins it from a cleff in the rock, and is the last tribute it receives. - The path to this station, en tirely through snow:-cross the river twice, once on the stones, and once on a snow arch............. $0 \quad 143$
5. At Bhairo Gha't - The crest of one of the steepest ascents, (for its length), I ever saw; it is entirely up the snow, in which we cut steps with P'haoras (spades) to facilitate our passage. - There is here a place dedicated to Rhairo Lal, who is esteemed to be the Janitor of Jumnotri, and Gangotri.-It is nothing more than a low building (if it may be so called) of 3 feet high, containing some small iron tridents. I I hung a new English silver coin by a copper ring on one of them....................... (1)25

6 Exceedingly steep descent to the Jumna, by steps cut in the snow, A cascade of the stream cuis through the snow, and falls from a rock of the height of about 50 feet. ............................ 0 0 130
7 Stiff ascent up the snow bed, which conceals the river. Except here, where the stream is visible fora few yards through a hole in the snow, thesnow bed is about 100 yards wide, and boundedby high precipices, from which masses of rock of40 feet in length have recently fallen,............ $0 \quad 3214$8 River as before, under the snow; here it appearsthrough a deep hole, falling in a cascade from therock below the snow.-Rocks on both sides, thoseto the right cased with ice......................... 0 152
9 Jumnotri. -The place so called ..... 64
Total miles 27 ..... 100

Ar Jumnotri, the snow which covers and conceals the stream is about 60 yards wide, and is bounded to the right and left by mural precipices of granite; it is 40 feet $5 \frac{1}{2}$ inches thick, and has fallen from the precipices above.-In front, at the distance of about 500 yards, part of the base of the great Jumnotri mountain rises abruptly, cased in snow and ice, and shutting up and totally terminating the head of this defile, in which the Jumna originates.-I was able to measure the thickness of the bed of snow over the stream very exactly, by means of a plumb line let down through one of the holes in it, which are caused by the steam of a great number of boiling springs which are at the border of the Jumna.-The snow is very solid, and hard frozen; but we found means to descend through it to the Jumna, by an exceedingly steep and narrow dark hole made by the steam, and witnessed a very
extraordinary scene, for which $I$ was indebted to the earliness of the season, and unusual quantity of snow which has fallen this year.When I got footing at the stream, (here only a large pace wide), it was some time before I could discern any thing, on account of the darkness of the place, made more so by the thick steam; but having some white lights with me, I fired them, and by their glare was able to see and admire the curious domes of snow over head; these are caused by the hot stean melting the snow over it. Some of these excavations are very spacious, resembling vaulted roofs of marble; and the snow, as it melts, falls in showers, like heavy rain, to the stream which appears to owe its origin in a great measure to these supplies. Having. only a short scaled thermometer with me, I could not ascertain the pre. cise heat of the spring, but it was too hot to bear the finger in for more than two seconds, and must be near the boiling point.-Rice boiled in it, but imperfectly. - The range of springs is very extensive, but I could not visit them all, as the rest are in dark recesses and snow caverns.The water of them rises up with great ebullition through crevices of the granite rock, and deposits a feruginous sediment, of which $\mathbb{E}$ collected some;-it is tasteless, and I did not perceive any peculiar smell. Hut springs are frequent in the Himálaya, perhaps they may be a provision of nature, to ensure a supply of water to the heads of the rivers in the winter season, when the sun can have little or no power of melting the snows in those deep defiles.

From near this place, the line of the course of the Jumna is perceptible downward to near Laliha Mandal, and is 5540 S . west. It will be
seen by the notes, that from the place called Bhairo Ghatí, the bed of the river is overlaid with snow to the depth of from 15 to 40 Reet, except at one or two places, where it shews itself through deep holes in the snow.

The snow bed is bounded to the right and left by mural precipices of light coloured granite; -on some ledges there is a sprinkling of soil, where the $\mathbb{B} h o j p a t r a$ bushes grow. The end of this dell or defle is closed, as before observed, by part of the base of the great snowy mountain of Jumnotri, and which is visible from the plains. 'Fhe altitude of the part of the mountain, visible, is 2948 ; but higher paris are concealed by the lover and nearer. The face of he mountain, which is visible to the height of about 4000 feet, is entirely cased in snow and ice, and very steep. -The foot of the base is distant from the hot springs about 500 yards, and immediately where the ascent becomes abrupt, a small rill is seen faling from a rock, which projects from the snow; it is about 3 feet wide, and shallow, beng only a shower of spray produced by the snow now thaw. ing in the sun's rays at noon. Above that, no water whatever is seen ; if there were any, it would be visible, as the whole steep base of the mountain is exposed to view, directly in front; consequently, the above rill is the most remote source of the Jumna.-At the present season, it was not possible to go to it, as the snow bed was further on impassable, being intersected by rents and chasms, caused by the falling in of the snow, as it melts by the steam of the boiling springs below it.

Here then is the head of the Jumna, on the S. west side of the grand Himálaya ridge, differing from the Ganges, inasmuch as that river has
the upper part of its course within the Fimálaya, flowing from the south of east to the north of west; and it is only from Suci $\%$, where it pierces through the Himálaya, that it assumes a course of about south $\overbrace{0}^{\circ} \mathrm{O}$ west.

The fall of the Jumna, from Jumnotri to the Dun, is very consider-able.-I regret I had not a good barometer, to ascertain the height of Sumnotri; I had with me an emply country made barometer tube, with which I endeavoured to gain an approximate idea on the subject. - Have ing warmed and well dried the tube, I filled it gradually with mercury, driving out such air bubbles as were visible, and inverted it in a deep cup of quicksilver, taking care not to remove my finger from the ori= fice, till the lower end of the tube was fairly below the surface of the quicksilver;-the tube was kept in an erect position by means of a plumb line.

Tre length of the column was $20^{\text {Ynch }} 40$, which, corrected for temperature, gives 10,483 feet for the height of Jumnotri above the sea, taking 3001 inches for the level of the sea.

The abore is only a rude experiment, but $I$ had not the means of making a better; the length of the column may be depended on to the 20th part of an inch, I think, but the probable impurity of the mercury may cause an error of 2 or perhaps 300 feet.

Near noon, I look a short set of circum-meridional altitudes of the sun for the latitude, as follows:

$$
\begin{gathered}
\text { Horary angle....A.-M. }\left\{\begin{array}{rrrrrr}
3 \mathrm{~s} & \mathrm{~s}^{3} & 00^{\prime} & 58 & 59 & 9 \\
5 & 19 & 30 & 58 & 59 & 0 \\
1 & 58 & 0 & 0 & 52 & 2 \\
2
\end{array}\right. \\
\text { P.-M. }\left\{\begin{array}{llllll}
0 & 31 & 0 & 0 & 47 & 5 \\
2 & 51 & 0 & 0 & 55 & 2 \\
6 & 28 & 0 & 0 & 42 & 6
\end{array}\right.
\end{gathered}
$$

Mean latitude of the hot springs of Jumnotri ........... 30 58 52 I

Tue latitude of the small fall or rill, which may more properly be called the head of the Iumna, will be $30^{\circ} 59^{\circ} 06^{\prime \prime}$.

Having finished my observations by two o'clock, I set out to return; the heat of the sun had then began to melt the snow on the cliffs on both sides, and many rocks and lumps of snow were falling down; this obliged us to run with all speed down the snow bed, to get out of the way of these missiles:--several of the people had narrow escapes from the falling fragments, but no one was struck.

Tue inhabitants of Cursále say, that it is 17 years since they had so severe a winter as the last.-At Jummotri, the inclination of the granite rock is from $43^{\circ}$ to $45^{\circ}$-from the horizon.-The apex being to the S. W. or towards the plains.

As the season was not sufficiently adranced to allow of my passing to the Ganges by the Chíá or Cílsaum mountains, botin of which are
at present impassable from the depth of snow on them, I returned to Catnaur, and going up the Shiaiba glen, crossed the ridge, which divides the two rivers at the Jackeni Ghát, and descended by Bauna, to Barathat, from whence I proceeded up the Ganges to Reital, and continued my route beyond Gangotri, as before mentioned.

I shortly hope to be able to present to the Society, the result of my tigonometrical operations to determine the heights and positions of all the peaks of the Himálaya, visible from Seharanpur; and also an account of the sources of the Tonse and Jóhnovi rivers, and of the upper part of the course of the Setlej.

ADDENDA.

$$
\begin{aligned}
& \text { Iifight of the Sanglic at Lohari Naig, abnve the Sea. . .... } 7380 \\
& \text { Below Suchi............................. } 7 \text { שO } \\
& \text { Suchi village } \\
& .8869
\end{aligned}
$$

Jumnautri................. .......... . 10,849

## IH.

## Latitudes of Places in Hindustan, and the Northern Noun-

 tains; with observations of Longitude in the Momentans, according to Immersions and Enersions. of Jupiter's Saíelites.
## By Captain J. A. HODGSON, 10 min Regt. N. I.



| Places. | $\left\lvert\, \frac{\text { Latitude }}{\text { "!" }}\right.$ | Prouince or District. | Reinarks. |
| :---: | :---: | :---: | :---: |
| Fumish, (C) | $20^{131} 4$ | Sersa | The chief town and residence of the Battei chicf Bumínur Fhan, taken by Col. Adim, but restored. This was one of Tamur's marches from Tatnir. |
| Batnir................ | $3.3140$ | But | West face of the fort, now in the posses. sion of the Bicanis Raja-Butnir is well hnown in history, from the extraondinary march made by 'lamur, across part of the desert to attack it. It is on the east verge of the great sandy desert, which extends to the Indus, and is in longituda $74^{\circ} 12^{\circ}$ E. nearly. In Arrowsmintis map, Butnir is also called Batinda, which is a large town ncarly 100 miles from it. |
| Tushénn | $28.5137$ | Heviance | Camp, 400 yards N. E. of the conical peak of rock. |
| Tigrána |  |  | N. verge of the village, which is a large one. |
| hacoúnź, | $288612$ |  | Manda's tomb-B'hawiní was stormed and carried by the troops under Com lonel Ball. It is a iarge walled village, 3 miles in circumference. |
|  | $2840.15$ | Initt | S. side of Birí, a very large walled vile lage. |
|  | $28.54^{1} 56$ |  | W. side of the village, which is a large ouse. |
| Curér. | 2849127 | Ditto | Large village, walled S. W. side. |
| Rhotac | 285315 | Ditto | Center of the town. |
| Mahim | 285655 | Ditto | Large mosque, west end of the torns. |
|  | 290 | Ditio | The fort-Mund ahal is a village between Mahim and Mensi. |
|  | 28.5420 | Ditio | S. side of the gillage betwcen Makim and Rhotuc. |
| Bissaien | 28.4243 | Ditto | Small village near Bicrú. |
| Nigána | 284556 | Ditio | Large village N. side. |
| Catlozsie | 285619 | Dillo | N. end of the $j^{\prime} h h^{\prime}$ l, under the village. |
|  | 282815 | Doul | Hort in Lieut. Col. Sernner's júg'r, on the Hindan river. |
| Tilliar .............. | 2756113 | Rokillihan | Mango tope at the S. E. end of the town, which is large. |
| Shahjehanpur ... ....... | 275117 |  | Camp, I mile east of the N. end of the |
| Bareilly, (irregular cavalry cantonmert) | $28-50 \cdot 5$ |  | city, which is very large, and equal or superior to Bareilly. <br> Cantonment of Col. Gardner's cavalay, 2 miles N . of the old fort, at the west end of the city. |
| ELurúdusád, (cantonment) | 28 $50.20 \cdot 3$ | Dito | 200 yards in the rear of the ceuter of the cautonmeat. |


|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Rámnagar $2822$ | Ditto ....... | North wall of the ancient and extensive Pándo's fort-The conical mound, (in height 70 feet), distant 411 yards S. 20 E. The circuit of this old fort, now in ruins, is exactly 4 miles, and it had 34 brick bastions. |
| Cásípur, (the factory).. 201155 | Ditio | The government's factory in the old fort, which was extensive, and resembling that at Rámnagar. At the N. W. end of the town, and distant from this 1 m .7 f . is another fort, of which Mr, Buraow observed the latitude. |
| Haldora .... .......... 291559 D | Ditto | One furlong west of the town: * |
| Bunheria .... .......... 29,32 3 D | Ditto | $1 \frac{1}{1}$ furiongs eat of the village. ${ }^{\text {a }}$, " |
| $\text { Nagina . . . . . . . ...... } 2020,49$ | Dillo | 2 furlongs S . E. of the town, on the Murádábád road. |
| Dhumpur ........... $\left.{ }^{29}\right\|^{17} 1^{13}$ | Ditto | 5 furlongs S. E. of the town, on the Murááááád road. |
| Sheokara ............ 291319 D | Dillo | 1 furlong S. of S. W. end of the town. |
| Burhia ............. 2750 it 0 | Ouide | 4 farlongs N . E. of the village, on the road to Sitípur. |
| Mahculi............. 27101081 | Diilo | Camp, 1 mile east $20^{\circ} \mathrm{S}$ : of the village on the Sitípior roard: |
| Sítúpur, (cantontant) .. $273330 \cdot 1$ D | Ditto | Bungalow on the left bank of the nutlct, $2 d$ line from the rear: |
| Pirnagar .... .......... ar $_{2} 25\|28 \cdot 5\|$ D | Dillo | 5. W. end of the bridge, road from Sitoro pur to Lucnozs: |
|  | Ditto | A dergal at the N. end of the town. |
|  | Ditto | Ifurlong N. W. of the town." - |
| Euctow, (cantonment) . $265450 \cdot 5$ | Dillo | Center of the rear of the Siptihis' lines of the right battalion. |
| $\text { Eucnow, (city) } \cdots \cdots \cdot . .265150 \cdot 1$ | Lilto | Capt. Macleod's house, near the resio dency. |
| Salar gunj .. .. .. ..... 265223 | Ditto | N. gate of the gunj, on the road from Lucnozo to Buiram gheit. |
| Buirem ghát, (c2nt.) .. 27 720.5 | Dillo | Captain Ramer's Dimegalow. . |
| Muhanzmedpar $\qquad$ 271312 | Ditlo | S. E. corner of tha town; on the road from Bairem ghát to Sutípur. |
| Bisša .... ....... .... 272316 | Ditito | Tank at the S. E. end of the town. |
| Nowil gunj .... .. .... $\left.{ }^{27}\right\|^{47} 10$ | Ditto | The Scrái in the town. This is the road from Lucnoo to Futiger'h. |
| Bangermow ..... ....... 265253 | Ditto | The west end of the towr, distant of furo longs N. 40 E. |
| Nanamow | Doab | The ferry, right bank of the Ginges, and 200 yards above the old mound of a fort. |
| Khoda gumj. . . . . . . . . 271131 |  | The Serat in the rillages. |



| Places. | Latio | $\frac{1 "}{\text { "itude. }}$ | Province \& District. | Rema |
| :---: | :---: | :---: | :---: | :---: |
| Juisinlpur | 100 ${ }^{1}$ |  |  | Vilage on the highbank of the Gunces. |
| Barámohána |  | 720 | Ditto . . . . . . | Small old town N. W. side. |
| Daurala | 297 | 730 | Ditto | Village on the road from Mecrat to Se e haranpur-1 furlong S. of it. Windy, bad observation. |
| Meerat, (cantonment).. | 291 | 17 | Ditto | Horse artillery lines-Dr. Puillizs' house. |
| IIastinápur ............. | $29$ | $956$ | Ditio | Scite of part of the ancient city, meno tioned in history, as having been once the capital of Mindustan. It stood on the right high bank of the Gunges, and has probably been swept away by the river. |
| Dhảránagar', (ferry) | 2916 | $6.48 \cdot 1$ | Ditto | At the ferry, right bank of the Ganges, opposite Dhárínarar.-The mosque there bears $76^{\circ} 40^{\circ} \mathrm{N} . \mathrm{E}$. |
| Katault, (town) | 2917 | ${ }^{7} 3$ | Ditto | The north gate of the town, distant 3 furlongs N . E . |
| Jansét, (town) |  | 957 | Ditio | N. E. gate of the town.-This was once the seat of the famous Saiyuds of Bára. |
| Dárhizwala, (village | 2925 | 529 | Ditto | Village in the Cadir of the Ganges. |
| Suchatál.. | 2928 | $854 \cdot 1$ | Ditlo, Seharanpur | East gate of the large intrenched camp of Zábita Khan, on the right higle old bank of the Granges. |
| Bihárí, (village) | 2923 | 349 | Ditto | Village between Jansét and Muzeffera nagar. |
| Nagal, (village) . | 29,49 | 925 | Ditto | Village between Deoband'h and Seha ranpur. |
| Sik'hpuru, (small old town) | 2954 | 445 | Ditto | Ditto ditto... |
| Scharunpur, (cantonment) | $\because 959$ | $9{ }^{1}$ | Ditto | The left Sergeant's bungalow of the infantry lines, distant $1 \frac{1}{2}$ furlongs 66 N. E. |
| Miangtur, (town) ........ | 2947 | 733 | Ditto | The old brick fort, distant 5 furlongs $\$$. 70 W . |
| Toghalpur, (village)..... | 2936 |  | Ditto | East side of the village, on the high old right bank of the Garges. |
| F'irozpur. |  |  | Ditto | Small fort and village above Suchatál. At this place, it is supposed, 'raimur crossed the Ganges. |
| Badshapur, (village) . |  |  | Ditto | Village and small fort in the Cadir of the Ganges. |
| Kâlpzer |  | $353 \cdot 3$ | Ditto | Village in the Cadir. |
| Loksir | 2945 | $5 \mid 25$ | Ditto | Ditto ditto. |
| Jwálapur, (town) | 2954 | $4 \longdiv { 5 2 }$ | Ditto | 4 furlongs east of the town. |
| B'hojpur | $2946$ |  | Dilto | Village and fort, right banis of the Gunges. |
| Goverl'hanpur | 2911 | 149 | Ditto ..... ........... | Large village and small fort in the Caclir of the Gurges. |


| Plates. | $\begin{array}{\|l\|l\|} \hline \text { Latitude. } \end{array}$ | Province \& District. | Remucks. |
| :---: | :---: | :---: | :---: |
| Raizale, (village)........ |  | Dinn valley, within the Brink of the rapid, right bank of the Gist range of bills. The Ganges. Dín, siuce the conquest, is attached to Seharenpur. |  |
| Lati'ha ghát', (ferry)... <br> Déhra. | $30 \quad 342$ | Dím. ..... . ............ | Right bank of the Ganges. This is the highest ferry on the river. Gate of the temple. |
|  | 301911 | Di |  |
| Felicpur | 532 | Doab-Seharampur .... | Small village ou the road from Seharan. pur to Déhra. |
| ri .................. | 30 |  | Large viilage between Seharanpur and Déhra. A well at E. end of the village. |
|  |  |  | 2 furlongs $N$. of the town wall. Bad observation. |
| Tajapur |  |  | Village between Daulutpur and Bhit. |
| Faizab | . $302016 \cdot 3$ | Ditlo ............ | Mosque at the village on the left bank of the Jumna, 6 furlongs S. of the ruins of the Emperor Shah Jehan's hunting palace or Padsha-muhal, at the foot of the south range of hills, where the Jumna issues from them, as the Ganges oppositc does at IIurdwar. |
|  |  |  |  |
| Bur'hia shát ........... <br> Raipur .................. | 30 69 | Ditto ................ | The ferry, left bank of the Jumna. |
|  | 301344 |  | Large village on the old canal from the Padsha-mahal, to Laung opposite Delfi-3 furlongs N. of the village. Bad obervation. |
| Padsha-bag |  | Ditto | Halting place, and well at the S. W. mouth of the Tiandi pass through the hills into the Dún. |
|  | 302236 | D | Large village in the Sál forest, $1 \frac{1}{2}$ furlongs N. of it. |
| Hoorouzala .......... | 302529.5 | Ditto | Large village in the forest, $N$. side of the valley, on the slope of the $B$ 'hccdráj mountair. |
| B'hadríj, (camp by the dell, higher on the slope of ) | 302552 | Ditto | Forest. |
| Suinspur.............. | 302311.7 | Dilto | Village on the Asun river. <br> Ferry on the left bank of the Jumnc. <br> Indifferent observation. |
| Ráj ghát . . .............. | 302427 | Ditto ................. |  |
| Kirda .... .......... | 30275 | Sirmur . . . . . . . . . . . | Village in the Kirda Dúu or valley. |
| Camp | 303135 | Ditto | On the Macaranda or Múrcañd a river, at the foot of the Nahan mountain. |
| Chicherauli...Scidrura.... | 301450 | Ditlo............... | Town in the Sik'h country, on the road from Bur hia to Nahan, belonging to Jod'h Simh, Kulsia. |
|  | 305017294434 | $\left\lvert\, \begin{aligned} & \text { Doab-Seharanpur .... } \\ & \text { Ditto ............................. } \end{aligned}\right.$ | Iarge village in the Cadir of the $J_{\text {umna }}$. Ferry, left bank of the Jumna, near the village of Béghi. |
| Cundo sha |  |  |  |


| Places. | $\|$Latitude. <br> $!!"$ | Province \& District, | Remarks. |
| :---: | :---: | :---: | :---: |
| Busera . Aairana |  | Doab-Seharanpzr <br> Doab-Meerat... | At a building, in a tope of celebrated mango trees, the fruit of which is esteemed to be the best in Hindustun, and was appropriated to the use of the emperor. Kuirana is an old town. |
| Chaprauli, . . . ......... | 291256 | Ditto | Large village S. W. side of it. |
| Khus-gunj, (cav. cant.) | $274936$ | Doab-Coel | Col. Gardnez's house, 2 miles fírom Khas-grmj. |
| Sicrole | $252417$ | Benares. | Mr. Brad's (the judge's) house near the bridge, at the station of Sicrole. |
| Digga | $253828$ | Behar-Patna | Col. Gardnen's house at Digga, near Dinapur. |
| Gopipur |  | Rengul, on the B'hágírathí branch of the Ganges. | 4 furlongs S. of the village, which is on the right bank of the river. |
|  |  |  | The following observations, on the ris ver to Dinapur, in Tirhut, and Chemparan, are from the means of meridian altitudes of the sun and stars, taken at the same time with reflecting circles, by myself and Captain Barton, who was appointed my as. sistant in the survey. |
| Aghadíp, (H) | $\begin{array}{r} 233712 \cdot 3 \\ 2 \\ \hline \end{array}$ |  | Left bank of the river, a mut $h$ at S. end of the village, bearing E. 250 yards. |
| Bicki Hít'. | 23 37 <br> 23 76 <br> 36 28 <br> $-\quad 3$ 38 <br> 23 36 | H. Ditio. <br> B. | Large village on the river, right bank. |
| Sati | $\text { - } 235813 \cdot 6$ | B. Ditlo | A village on the left bank, bearing W, 20 N. distant 4 furlongs. |
| Rangamati | (24 119 | Dilio | Village on the right bank. |
| Berhampur | $245 \int^{39}$ |  | S. W. corner of the great square of the cantonment. These observations are not good, the weather being cloudy. |
| Gadhai | $\begin{array}{r} 242214 \cdot 1 \\ 16 \cdot 5 \\ \hline \end{array}$ |  | Right bank-Village, where the small Nulla joins the river. |
| Place where the navigat tion of the B'hágirathe opeued from the main ri- ver, in November 1814. | $\left\|\begin{array}{c\|c} 1 & \\ 2-38 & 28 \cdot 2 \\ - & 25 \cdot 7 \end{array}\right\|$ | H. Ditto | 4 furlongs N. of the sandy point, round which, boats now turn from the 13'hía girathi into the great Gunges. |
| Sioujpur.............. | $\left\|\begin{array}{c\|c} 24.50 & 51 \\ -1 & 48 \cdot 5 \\ \hline 2450.49 \cdot 7 \end{array}\right\|$ | Beng. on the river Gunges. | Remains of a village ou the left bank of the river, near the ruins of Gaur. 'The Cadam Resúl there 68 N. E. distant about $3 \frac{1}{2}$ miles. |


| Places. | $\left\|\frac{\text { Latitude. }}{}\right\|$ | Province \& District. | Remarks, |
| :---: | :---: | :---: | :---: |
| Madhupr | $251755$ | Bengal, on the river Gan ges. | Village on the right bank. Ríj-mahal point E. 56 S. Windy, bad observation. |
| Right bank of the river, near Moiijerna cascade | $251^{1251}$ | Ditto | The rote of the bearing of the cascade is mislaid, but must be nearly west. Barometer 29, 04-Ther. 74. |
| Gangúp | $\begin{array}{r} 2531.2 \\ -27.3 \end{array}$ | H. Ditto | Uuder the village, and high right bank of the river. The high hill over Teria galé bearing west $0^{\circ} 40^{\circ}$ north. |
| Sicrí gali | $\begin{array}{r\|r\|r} 25 & 14,56.5 \\ 15 & 1 \cdot 3 \end{array}$ | Ditto | iay yad Aumed's tomb on the top of the hill, right bank. |
| Near Colrong ....... | $\begin{array}{r} 251633 \\ \mid \quad 38 \end{array}$ | H. Ditto <br> B. | Right bank. The indigo planter's white house, distant 200 yards E. Large house on the hill $217^{\circ}$. Tree on the lower rock $232^{\circ}$. (S. $52 \mathrm{E)}$. |
| Bhagrlpur or Boglipur | $\left.-\frac{2.5}{1.518 \cdot 5} \right\rvert\,$ |  | The temple of Maitádéva on the right bank of the arms of the Ganges, which flows under Boglipur, and nearly in the center of the town. |
| D | $\begin{array}{rrr} 25 & 22 & 52 \cdot 6 \\ 23 & 1.5 \\ - & - \end{array}$ | H. Behar, on the Ganges | Town, right bank of the Gunges. The Byar creek, which leaves the Gańd'uca river at Karnaul, in Tirhat, joins the |
| N | $559541$ | Ditto | Village, right bank. Indifferent observation. |
|  | $\begin{array}{r} \left.50 \begin{array}{r} 34 \cdot 8 \\ 24 \cdot 5 \\ -2 \end{array}\right] \end{array}$ | B. | Town on the right bank. The mouth of the Pompon river $3 \frac{1}{4}$ furlongs W. 10 N. The mut 150 yards E. 20 S. |
| Dinapur, (cantonment).. | 253812 | Ditto | Flag staff $1 \frac{1}{2}$ furlongs, bears S. $\hat{2} 0$ E. Bar. 30, 03. -Ther. 68. |
| Seespur, (ferry) | $12540 \mid 8$ | Ditto | The ferry, where Major General Mar. Ley's division crossed. Fiag staff at Dinapar $116^{\circ}$. Seerpur 187. Here we leave the Gunges, and procced with the army to the Népál frontier. |
| Camp, above the | $25 \begin{gathered}4015 \cdot 7 \\ -19 \\ -1\end{gathered}$ | H. Ditto | Head quarters, 29th November. |
| Mirzapur, (camp near).. | $25.488^{1773} 6$ | Behar | 5 furlongs N. W. of the village, on the Mai Nullu, a creek from the Gun' daca. |
| 2 | $\left[\left.\begin{array}{c} 25 \\ 59 \\ -28 \cdot 9 \\ 38 \cdot 1 \end{array} \right\rvert\,\right.$ | tuto | Large village.-Camp-The village dise tant $1^{m}$ afurlongs, and S. 30 east. |
| Camp, left bank of the; <br> Gianda ac......... $\}$ | $20\|4\| \begin{aligned} & 33 \cdot 6 \\ & 48 \cdot 2\end{aligned}$ | Ditto Tirhut | 1. furlongs above Futipur ferry. Breadth of the Gurid ac here, 530 yards. |


| Places. | $\frac{\text { Latitude }}{0}$ | Proviace \& District | Remarks. |
| :---: | :---: | :---: | :---: |
| Camp near Goorti. . . . . |  | Behar- Tirhut | Camp, 5 furiongs: N. E. of the village on the Byar creek. |
| Chyıipur ............... | $26 \left\lvert\, \begin{gathered} 15 \\ 40 \cdot 81 \\ 10 \cdot 11 \\ 5 \cdot 1 \end{gathered}\right.$ | H. Ditto <br> B، | Camp, 9 furlongs. N. $14^{\circ}$ west of the village. |
| Bridge of boats over the? <br> Bur'ha Gan'dac rivery | $\begin{aligned} & 2624 \\ & -21 \cdot 9 \\ & -20 \\ & \end{aligned}$ | $\mathrm{H}_{\text {H. }}^{\text {B. }}$, Ditto | Camp, near the village of Cátharce, distant 7 furlongs $\mathrm{N} .83^{\circ}$ E. on the left bank of the little or old Gandac, which is called higher up the" Sikk and river. At the bridge, the river was 93 yards wide, and 6 to 9 feet deep. |
| Camp near Mejauli |  |  | Camp, on the left bank of the Bukia river, near the village. Not good observá tions, on account of the camp smoke. |
| Dacca. |  | H. Ditto | Camp, 2 furlongs N. 15 east of the vile lage. :Thêse 2 sights differ $98^{\prime \prime}$ which is more than usual; but in a large camp, observations are liable to be hurt by the smoke, and the trampling of men and cattle. |
| Gorasén | $\begin{array}{r} 26 \quad 4937 \\ \hline \end{array}$ | H. Ditto | Camp, left bank of the Bukia, opposite side to Gorasén. Tolerable obser vation, but much smoke. |
| Camp near Jitpuir | $\begin{array}{r\|r\|r\|} 26 & 8 \cdot 7 \mathrm{H} \\ -\mid 13 \cdot 5 \mathrm{~B} \\ -\mid & 120 \end{array}$ | H. Behar-Chemparan <br> 3. (In the Teráá) | Camp between the Jumni river, and Tir-mulldo. Village of Jítpur, distant 6 furlongs, W. 56 N. |
| Lowten, (camp) | $\left.27\right\|_{27} ^{27} \left\lvert\, \frac{6 \cdot 4}{4 \cdot 7}{ }^{1}\right.$ | H. Ditto | The Bultioid-nulla is on the right flank of the camp, and the fort Bareht ger h $h$ is distant $2^{\mathrm{m}} 1^{8}$ E. $8^{\circ} \mathrm{S}$. This latitude is the mean of various observations of the sun and stars. |
| Alown, (camp |  | B. Ditto | Catip, on the left bank of the Berha river. I Ruins of the small fort of Alown (across the Berha) 3 furlongs, and east 50 S. At this camp, Captain Sibity ${ }^{\prime}$, and the artillery men killed at Persa, were buried. |
| Amerpati, (camp) | $\left.-\left\|\begin{array}{c} 26 \\ -1 \end{array}\right\| \frac{41 \cdot 5}{41 \cdot 6} \right\rvert\,$ | Ditto ............... | Cainp, on'the left bank of the Gaadriver, near the hamlet of Amerpati. |
| - Mohan, (camp) | $27\left[\begin{array}{c} 540 \\ 33 \\ \hline \end{array}\right.$ | Ditto | Left bank of the Gaad river. The small village of Mohan $310^{\circ}$ |
| Bechati, (ciamp) | $\left\|\begin{array}{c\|c} 27 & 536 \cdot 5 \\ 26 & 5937 \\ & \left.\right\|^{29} \end{array}\right\|$ | H. Ditto <br> B. | The smatl village of Bellui, distant 5 fur: Ioxts, bearihg $247^{\circ}$. |




| Places. | $\left\lvert\, \frac{\text { Latitude. }}{}\right.$ | Procince of Disitrict: | Remarks. |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Buxur, (flag staff in the } \\ & \text { fort).................... } \end{aligned}$ | $253435$ | Titrut | Right bank of Gantges. |
| Ghasipur | 259350 | Ditio | $2: 0$ yards below the Chihelsition palace: |
| Left bank of the Ganges | $2500$ | Ditto ................ | 5. east end of Ghazipur cantonment 410. The Chihedition $48^{\circ}$, distant about 6 miles. |
| E'meria | $2512447^{\circ}$ | Ditto | Indigo works on the right bank. River up $212^{\circ}$ to $235^{\circ}$ and $240^{\circ}$. |
| Left high bank |  | Ditto | Sahibpur, N. right bank opposite $230^{\circ}$ 7 furlongs, Nidra 274, Phulizaria $209^{\circ}$. |
| Right bank Delow Benares | $251554$ | Ditto .................. | Sands-Surar village $283^{\circ}$. 3 m . river's course up $282^{\circ}$, down $100^{\circ}$. |
| Benares | $\left.\right\|_{1} ^{25} 17$ | Ditto | Sand on the right hank, opposite the city. Center of the dome of the great moṣque $13^{\circ}$. 14 Sioálce temple $230^{\circ}$. 19 - River front bastion of Ramnagur $161^{\circ} .38$. |
| Chutar | $25{ }^{2} 780^{\circ}$ | Ditto | Atl the ferry N . of the fort. The flag staff $18^{\circ}$. S. W. corner bastion 83. |
| Chepur | $\left.\right\|_{1} ^{5} 1217^{\prime \prime}$ | Ditto | High right bank of the river, under the village of Chepur. The large village of Betauli distant $1^{\mathrm{m}}$. 1. f. and bears: 116 lower down the river: Many troublesome sands in the river here. |
| Miraupu: | $25943{ }^{5}$ | River Ganges | Dr. Turnbull's house and factory, on the high right bank of the river. |
| Bijraul | $\begin{array}{c\|c\|c} 25 & 16 & 5 \\ 1 & \vdots & \\ 1 & & \end{array}$ | pitto | Under the Sivála and village, right bank of the river: At this places is a ledge of konker rocks; and a very: strong current, dangerous to boats. |
| Chandriz | $252055$ | Ditto | High right bank; at the small village of" Chandni: Highest building in the fort of Allahabod $331^{\circ}$. 10. |
|  |  | Oùde | Left bank. S Seráá village $9^{\circ}$. 6 fúrlongs. Bungalozo on high point at Ougrenie, right bank $283^{\circ}$, river up $285^{\circ}$. down $130^{\circ}$. |
| Subadar ka perwa. | $253137$ | Ditto | Left bank. Sinhori 1220-Stone ghát at Jehicnabad 259, Busiri 210. River up $255^{\circ}$. |
| Palhanna. | $253424$ | Doab | Palhanna, large village with a Sivála meth, right bank. |
| Ranicpur:。 | 264616 | Oude | Left bank, below the high old fort. |
| Dalmown. | ${ }^{2} 6358$ | Ditto | Sand on the right bank, upper stone ghát in the town across $351^{\circ}$, ceater ghát $9^{\circ}$, lower $81^{\circ}$. Transit of Mércury The preceding limb of the planet going off,touched the'sun's exterior limb; at mean time $22^{\mathrm{h}} 15^{\mathrm{m}} \cdot 44^{\mathrm{s}} .40^{\mathrm{th}}$. 5 . $11^{\text {th }}$ November, 1815. |





| Places. | $\left\|\frac{\text { Latitude. }}{}\right\|$ | Promince \& District. | Remarks. |
| :---: | :---: | :---: | :---: |
| Seraén |  | Biselzer | Walnut tree, near the Raja's house. Seraen is about 4500 feet above the Sellej, and is the summer residence of the $R \operatorname{aíj}_{j} ;$-a pleasant situation on the mountain side;-it is only a village. The Rájá's house is high, and built in the Chinese form, as usual in these mountains. |
| Tranda |  |  | Village, high above the Setlcj. Canaur is that remote and rugged provisise of Biseher, which is within the Himálaya, and on the Setlej riper. |
| Rungoas | $313251$ | Ditto | Left bank of Setlcj, and high above it; the river is conlined by mural precipices. |
| Níchar | $313315$ | Ditto | Do. <br> Do. |
| Bocra | $313246$ |  | Village, in high gien of the Sallang river, which falls from the N. side of the snowy peaks to the Setlej. This village, and the others of Canuar, are in show the greater part of the year. Here ${ }^{r}$ turned to S. E. and began the great ascent of the N . face of the S . ridge of the Himálaya. |
| Pass over the Snowy $\}$ <br> Range ...........ヵ. |  | Ditto | 24th June, 1816. In the snow, and beetween the cliffs of the Himalaya, at the immediate foot of the Punwre pass over the snowy range from Cunaur into Sivarra, and on N. side of the pass. This, place is confined by cliffs, which rise perpendicurarly above it, to the height of 3736 feet. Water boiled at $190^{\circ}$ of Fahrenheit. I crossed the ridge on the 25th June, at 11 a. $m$. in a heavy shower of snow. |
|  | $311519$ | Bisch | Village onlthe Indravali river, which falls into the Paber. |
| Roorou. | 31 ${ }_{31}^{11} 5$ | Ditto | Large village on the $P$ aber river, which joins the Tonse near Raghai. Large village in the Nora district. |
| Hurneoul.............. | . 31 [5729 | Ditto | Large village in the Norc district. |
| Wartoo, (fort) ........ | 21/14.44 | Comarsén | Wartu or Hurtze mountain, $7^{\text {m}}$. 3. ${ }^{\text {f }}$ S. E. of Cotghur. Height of the mountain above the sea, about 10,0060 feet. During a residence of 7 days on this peak, in July, I could only get one observation for the latitude, and that a bad one, the mountain being enveloped in dense clouds. |


| Places. | $\left\lvert\, \frac{\text { Latitude }}{011}\right.$ | Prowizce of District. | Remarks. ; |
| :---: | :---: | :---: | :---: |
| (On or near the river Jum$n a$, weithin the mountains of Jaunsar, Sirmor, ana Rewжеп.) |  |  | Fort on the hish peak of the moun |
|  |  |  | Fort, on the high peak of the mountain, 3 m . west of the Jumna. |
| Murlang |  | Ditto | Village, in the glen on the Silgad river, which joins the Jumna, 5 miles east. |
|  |  |  | $d^{\prime} a l$ is said to have been a place famed in Hindu story, as one of the favorite haunts of the Pan'dus. There were a great number of temples and idols here, but they appear, in a great measure, to have been buried by a slip of the side of a mountain, which overhangs their scite. |
| Paunti. | $38^{48}$ | Rewaen | Village, on right bank of Jumna, and 400 feet above it. Rewouen is the up. per division of Gerhwal, and chiefly subject to the Gerhzoul Rájá. |
| Gira | $\|30.52\| 8$ | Ditto | Village, on the side of the mountain, in the Baraulglen, $5^{\mathrm{m}}$. $7^{\mathrm{i}}$. from the right bank of the Jumna. |
| Thanno | $30 \mid 19,12$ | Ditto | Small village, right bank of the Jumna, and 400 feet above it. Cross the river on a low Sangha-Breadth of the river, 40 feet, but deep, and falling in cataracts. |
| Cutnaur ............... | 305135 | Ditto | Small village, left bank of the Jumna. |
| $\begin{aligned} & \text { Ojhír ghur or Wazir } \\ & \text { ghur } . . . \text {........ } \end{aligned}$ |  | Ditto | Right bank of the river, small hamlet, 500 feet above the strear, which is confined by maral precipices of great height. A small fort here. Most of the villages in this neighbourhood were buried by the fall of the cliff above, in the earthquake of 1803. |
| Banassa. | $30 \mid 56,50$ | Ditto | Bad and uncertain observation. Weather thick. Small village, at the confluence of the Banassa river with the Jumna. There are 10 houses here; the rest were buried, last year, by a slip of the precipices. Appt. alt. of Jamnautri east snowy peals, as seen hence, $15^{\circ} .34^{\prime} .45^{\prime \prime}$; of west peak $17^{\circ} .13^{\prime} .3 \sigma^{\prime}$. |
| Cursaild . . . . . . . . . . . . | $\left.\left.\right\|_{1} ^{30}\right\|^{57}$ | Ditto . | Left bank of Jumna, here 17 feet wide, and knee deep. Curs'aliz is at the foot of the Jumnautri snowy peaks, and 3 miles from Jumnautri. In the latter end of April, the snow was 2 feet deep in shaded places in the village. There are about 25 houses, |





## Tre following observations of Eclipses of Jupiter"s Satellites, will be

 useful in shewing the longitudes of Seharanpur, and several places in the mountains, the latitudes of which have been noted above. Till corresponding observations of these Satellites can be obtained from Greenwich, or some other Observatory, we must be content to compare them with the calculations in the Nautical Almanack.| Place. | Year | Month. | $\left\lvert\, \begin{gathered}\text { Mean time of } \\ \text { observation. }\end{gathered}\right.$ | Diff. in time. | Renarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{c}\text { Mr. Grinnall's } \\ \text { house, near Seharanpur }\end{array}\right\}$ | 1817 | July 13 | (11)32\|35 $68{ }^{21 / 57}$ | 510338 | This appeared to be a pretty good obserpation, but the airwas not very clear. |
| Ditto. | 1817 | July 29 <br> N. A. |  | $51108 \cdot 6$ | Emersion of Jupiter's 1st Satellite. Sharp and good observation. |
| Ditto | Do. | August 14 N. A. | $\stackrel{8}{101} 12$ | $510121$ | Emersion, 1st Satellite. Good observation, but suspected. I saw it 3 seconds before, or at $8^{\text {b }} \cdot 10^{7} .09^{\text {i }}$ 。 |






We could not take any observations of the Satellites higher up the Ganges than Suc'hi, as the great height of the impending cliff;, (some times $50^{\circ}$. above us), prevented our seeing Jupiter, when the Eclipses took place. By the same cause, I have lost many observations in other parts of the mountains.

The longitudes of all the snowy peaks, visible from it, will be deduced from the meridian of Seharanpur, by triangles, as well as their latitudes, distances and heights. The base for the purpose is that of the Chaur mountain and Seharanpur, the station signals at each place, being visible from the other, and at the distance of sixtyoone Britist miles. The angles of the grand snowy peaks have been taken at each station with the circular instrument, as well as their apparent altitudes at different times.




The latitudes in this list were deduced from meridian and circum. meridian altitudes of the sun and stars, taken with sextants, or, more generally, by Troughton's reflecting circles-Except four places in Huriána, and five in the city of Jaipur, the latitudes oi which were obtained by trigonometrical processes.

## ERRATA.



## IV.

Description of a Zoophyte, commonly found about the Coasts of Singapore Island,-with a Plate.

By Major General thomas hardwicke, F. R. L. \& A. S. Read 13th November, 1819.

THIS subject belongs to the Genus Spongia, to the class Vermesand is of the order Zoophytes.-From its peculiar form, we propose to term it

## SPONGIA PATERA.

Root.-Branching, the shoots of various thickness, from the size of a finger to 3 inches in diameter, slightly diverging, composed of earth, sand, and broken shells, and very fragile.

Sten.-Cylindrical, of the same cellular texture as the bowl, and about the same length, in circumference, pretty equal-from 15 to 17 inches diameter-surface porous.

Cup-or Bowl.-Circular-and subconical, in diameter at the brim 17 inches, about the middle $12 \frac{1}{2}$, and near the bottom 7 inches, capable of containing thirty six quarts of water: in substance corky-but non= elastic, made up of cells or tubes-running into one another, and di* vided by a slender membrane, not more than half a line in thickness: over the whole surface, both within and without, are-spread innumerable pores, the mouths of which are closed with capillary-cottonyfibres in converging radii from the circumference to the centre of each pore; these when seen under the power of a common lens, have a dense downy appearance.

The height of the specimen, from which this description is taken, is 37 inches, and something larger than one presented to the Asiatic Society by Џohn Palmer; Esq.

In an Essay on British Sponges, by the láte George Montagu, Esq. printed in the 2d volume of the Wernerian Society's Transactions, is described-" Spongia Scypha"-which bears some resemblance to the specimen from which the plate annexed was taken, but it is dininutive in all its parts, when compared to this Indian species.

## W.

# Description of a substance called Gez or Manma, and the耳usect producing it. 

Br Major Generat Thomas hardwick . F. R. L. \& A. ©. Vice President. Read 17th June, 1820.

I BEG to lay before the Asiatic Society some information upon a subject which forms a paper in the first volume of the transactions of the Bombay Literary Society. Captain Edward Frederick, of the Bombay Establishment, has given his remarls on a substance called Gez or Manna, found in Persia and Armenia,-but the doubt of authors who have writen upon the same subject, seems by no means cleared up, as to whether this substance be the produce of an animal, or whether it be a vegetable gum; and Captain Frederick concludes his paper with re= marking that ${ }^{6 /}$ at some future period it may be proved to be the pros "d duction of the Aphis tribe, instead of vegetable gum."-The celebrated French Entomologist Geoffroy, has already attributed to a species of Chermes, the property of producing both in the Larva and Pupa states a sugary substance of a white colour, resembling Manna; and it is in cons

1I. Ani

## Cheromishlannifex



3


3

N"). nuturul size of the insect.

3. hars: wirse. de.


1
4. Mritrome spacinener of the yuvery
f the manno ine is natume dikuc.

- Su Tradior.aPIP.
in their natural state , covered with a white filamentous or cotton like substance.-Fig 5, is the same parcel of the larvæ, removed from the leaf and reversed, which exhibits an undefinable mass, by the confused mixture of legs, somewhat darker, by having dried on the leaf.-Fig. 6, shows a fragment of the Manna, in the state it was taken from the tree. It is found however in pieces of various shapes; some flat, as taken off the leaves of the tree; sometimes in cylindrical pieces, impressed with the figure of the stalk or branch on which it has. fallen

The formation of this substance upon those parts of the tree from which the insect does not receive nourishment, may appear difficult to acecount for, but if the economy of these infestors of plants, the cocci and the aphides be attended to, the difficulty will vanish.

The Revd. Dr. Kirby, in his introduction to Entomology, vol. 2d page 89 , has given a most interesting description of the natural economy of these tribes of insects, or rather of the aphides; and 1 have witnessed all he relates on "the loves of the ants and the aphides."-It is not therefore in my mind a matter of difficulty, or unreasonable to suppose, that had the numerous aphides, I have seen drawing their nourishment from the succulent parts of a plant, been unattended by the multifude of large black ants, incessantly urging them to part with the luscious drop, I should have seen the accumulation of this limpid liquid from a thousand springs trickling down the leaves and stem, drying as their surfaces spread, and drop after drop forming incrustations, bearing impressions of the branch or leaf, and like the substance I now produce before the Society.

To what I have stated above, I shall add the observations of Mr. Huster, which are of material importance to the subject of this paper, as relating what he himself saw:

Extract of a letter, dated Camp, Pachmári, 11th March, 1819. ${ }^{6}$ I shall now try to describe to you a natural curiosity which If found " in my rambles in these hills; and I have inclosed a few of the insects "w with a specimen of the substance, which, it appears, they have the ${ }^{66}$ pawer of generating from their bodies, The substance appears to pro= ${ }^{6}$ ject from the abdomen in the form of a tail or bunch of feathers, of a " nature more like snow, than any thing I can cumpare it to. These in${ }^{66}$ sects are found on the branches and leaves of trees, on which they "swarm in millions, and work and geae rate this feather like substanee, "6 till it gets long, and drops on the leaves, caking on them, and resemos, "6 bling the most beautiful white bees wax; this hardens on the leaf, and, " takes the complete form of it, which you can strip off, bearing the very, "s impression and imitation of the leaf itself, which no art could exceed. ${ }^{6}$ But, what appears surprising, they do not seem to eat or destroy the " leaves they swarm on, and though they may have been some days on " the leaves, nothing mote is seen than this waxy substance issuing "f from the tail. I have seen a great deal of it about these hills, and much, "s might be collected, I should suppose, were it desirable; there are no " inhabitants however about here. We have been on the top of the range, " since the month of December, watching the movements of the Ex" Raijá uf Nágipur. Our position is about south-viest of IIussáiucíbád.
s6 The climate is good. -The thermometer $58^{\circ}$ at sun-rise, $86^{\circ}$ at noon, ${ }^{66}$ and $80^{\circ}$ at sun-set. No hot winds as yet."

The small branch with flowers received from Mr. Munter, proves to be a climbing species of celastrus.

A more perfect account of this insect must depend on the opportunity of observing it in all its stages-the whole of what we had for inspection (about 100) were apterous, and the abdomen of all totally destitute of those processes which distinguish most species of Chermes from the preceding Genus Aphis.

The appearance of the insect, before being handled or disturbed from the leaves and branches they form on, furnishes a character admitting of comparison with another species of Chermes-viz. Chermis Alni*which in the larva state is covered with a viscid, downy, filamentous substance-so are the insects under inspection in their native haunts; but however light and flocculent this may have been when frrst taken, the pressure it has undergone in a transit of several hundreds of miles, must be considered as likely to rob it of that character.

[^29]


## VI.

An accoint of Trigonometrical and Astronomical Operations for determining the Heights and Positions of the prin. cipal Peaks of the Himalaya Mountains, situated betwoen the latitudes of $31^{\circ} .53^{\circ} .10^{\prime \prime}$. and $30^{\circ} .18^{\circ} .30^{\prime \prime} . N$. and the longitudes of 77.34. 04". and 79. $57^{\circ}$. 23". $E$.

By Captan J. A. hodgson, 10 th Regt. N. I. and Lieut. J. D. herbert, 8 th Regt. N. I.

On the successful termination of the first campaign against the armies of Nepal in 1815, in which they were expelled from their conquests in the mountains between the rivers Setlej and Kali (or Gogrulh) by the Britioh forces under the respective commands of Major Generals Ochterrony and Martindell, and Colonel Nicolls; and the provinces of Gerizual, Sirmor, Hindur, Bisalier and Kamaon, with the exception of some small districts, being restored by the British government to the Hindúu Rájáss, their ancient possessors, the Most Noble the Governor General in Council was pleased to direct, that surveys of the above countries should be executed by Captain $W_{\text {ebb }}$ and myself. To Captain $W_{\text {ebb, }}$ who was then in Kamaon, the survey of that province and of the castern parts of Gerhvol. xiv.
wal was assigned; and to me, that of the western part of Gertheal, and on the mountains between the Ganges and Setlej rivers. My instructions were summarily, "to make a correct survey of the liberated provinces "of Gerhwal, Sirmor and Hinctur, as well as of the countries to the " nork of them reaching to the Himailayor, a tract which comprises the "sources of the Ganges, Fumna, Tonse, (hitherto unknown, though larger "than the Jumna) and Setiej rivers; and which is bounded by some of "the noblest mountains in the world." I was ordered to carry on my researches as far as rationally practicable, and Colonel Crawford, then Surveyor General, was directed to prepare such instruetions for me as he might deem necessary. That distinguished and scientific officer, alike versed in the theory and practise of great surveys of this nature, approved of the methods I had suggested, for carrying on my operations, and gene rally directed me to be guided by such circumstances, as might appear to me most conducive to the objects in contemplation

Ir will be acknowledged; that the extension of geographical' knowledge is a desirable olject, and it cannot be denied, that to ascertain the heights and positions of the snowy peaks of the Himálaya is notionly an interesting and curious, but very useful, inquiry, for when their latitudes and longitudes are known, the geographical position of any place; from whence one, or more of them, are visible; may be determined with case and accuracy. We have every facility and opportunity of observing some of these resplendent and lafty guides, in the great extent of $15 \frac{1}{2}$ degrees of longitude, now, either in our possession; or under our influence and control; from the banks of the niver Setlej at Ludiara; to beyond those of the Burrampooter in Bengalo

In all his belt, the outline of some of the snowy peaks may frequently be observed, in clear weather, to the distance of 150 miles and upwards, with sufficient distinctness, for an observer to fix his own position, by obvious methods; and thus, to be enabled to correct the geography of the older maps. But as yet, we do not, by Captain Webb's survey, and that of Lieutenant Herbery and myself, know the precise latitudes and longibudes of any peaks further to the S. E. than the latitude of $29^{\circ} \cdot 9^{\circ} .43^{\circ}$. and longitude 81..2.. nearly. It would be very satisfactory, to determine the positions of those more eastern peaks, visible from Patna, Monghir, Bhagalpír and Rajmat, and this may be done with considerable precision, by their Asinuthz, taken at the above places, with their observed differences of latitude, and differences of longitude; taken with good chronometers, carvied down the river in fast going light boats, when the stream is most rapid: the boats would reacl Monghir from Patna in: a day, and two good chronometers, oughe to give the difference of latitude, within. a quarter of a mile. The chronometrical measures, may also be compared and corrected by differences oflongitude taken by the firing of gunpowder: the flash of haif a pound of gunpowder, fired at the hill house at $P$ if Pahar near Monghir would be seen at Janghifra rock, from which, a flash would be seen at Patter Ghatta, below Bhagalpur, and thence at Pír Pointí or Sicri Galk, or probably Rajmal. I am: by no means sure, that a flash from the top of the Golak at Patna, might not be seen at Pór Pahúr, as Baron. Vanzach observed the effeets of this sort of illumination at places, so far distant from each other, as to be reciprocally concealed from sight, by the curvature of the earth. By this method much may be done, and the longer the line the better. Of course it requires a:
good observer at each place, with one or two assistants, good instruments, and great alacrity, and the mean of alternately repeated flashes; and to such extent as they may be visible, this method is above all astronomical operations, for determing differences of longitude, the most certain. But to return to the subject immediately under consideration. Having received my instructions, I proceeded from the army, on the immediate frontier of Nepal to the upper part of the Doab in the Seharanpres district, in which, or in the Déhra Dún, or valley, I intended to begin my operations, by measuring a base of four or five miles in length, if the ground should prove favorable. On examining the plain lying at the southern foot of the hills, between the Ganges and Jumna, I found there were several places where I might measure a line of three or four miles, but that on account of the mango groves, with which the country is studded, it would be very difficult, if not impossible, to extend the sides of the triangles, which would increase in length considerably, before I could prolong them to the feet of those low hills, which divide the plains from the Duin. On the summits of the last mentioned hills, I intended to establish stations proper for obtaining others, on those loftier mountains, which bound the Dún to the north, and command views of the Himálaya peaks, as well as of the plains. When the distances between some of these points, and Seharanpur, as well as their reciprocal distances from each other, should be established, I intended to use those lines as bases, whereon to determine the positions of the snowy peaks, as has since been done. The search of the ground having proved unsuccessful in the plains, I proceeded, for the purpose of making a similar examination, to the Dúr, to search for more favorable ground. The Duin, though a valley, has an uneven surface, sloping
from the hills, which bound it to the north and south, to the two rivers Soang and Asan, which have their courses from its centre in different directions, to the Ganges and Jumna: much of the sloping ground of the valley is covered by forests: the central part, near the rivers, is more open, but marshy, and overgrown at the season, when I examined it, by high grass and reeds, which cannot be destroyed by burning, before the commencement of the warm weather, untill which time it is detrimental to health to remain in such places, and the tigers and wild elephants which then abound in the thick cover are troublesome: at a later season I might have been more suiccessful in finding clearer ground, but $I$ began to re-consider whether a plan which $I$ had long before had under consideration, might not nearly or wholly obviate the necessity of measuring a base, an operation well known to be very tedious, and with limited means exceedingly difficult: to execute it in the precise manner, which is requisite when the object is to measure an arc of the meridian, a number of coffers, tripods and elevating screws would be necessary, and even if I could have procured workmen to make them, they must have been cut out of unseasoned timber, which would warp and cause much uncertainty. How some of these difficulties were afterwards obviated by Lieutenant Herbert, will appear in the account of his measurement of a base.

The method by which I hoped I should be able to avoid the trouble and loss of time incident to the actual measurement of a base, was this: to determine as accurately as I could the difference of latitude of two places in sight of each other, but as far distant as possible: this difference of latitude with the observed Azimuths, I considered, would shew the number of rol. xiv.
feet due to it, and consequently, the observations being supposel correct, thè distances of the two places, which might be used as a base of great mag2 nitude. The stations I solected for this purpose were first the house of Mis. Grindale, the judge and mágistrate of Sehárompár, which for the sake of distinction we shall call Belville, a very large and conspicuous white building in an open sitaation, one mile and a half south of the town of Sehuranpur. The second or northemi station is a very remarkable and lofty mountain, which divides the hill provinces of Sirmor and Júbal, called the Chür or Churkled hár: its summit is upwards of 11,000 feet above the level of $S e^{*}$ hatanpuir ; the point where I fixed the station is $10 ; 650$ higher than the station at Belville, from whence its Azimuth $3.2 \grave{\circ}^{5} .05$. to the west of north; a direction so near the meridian, being extremely valuable, in determining the distance in the manner I proposed. The station mark on the Chuir; is a pyramid which I built of pine trees, rock and turf, 35 feet high: it is visible from Belville with the instruments I intended using, and the south point of the line there, is seen from the Chir', by firing white lights on it at night.

The distance of these stations is upwards of $61 \mathbb{B}$. miles, a distance suffil, ciently long to serve as a base for the most distant snowy peaks visible from either end of it, and I hoped, that by taking a great number of zenith distances at each place, I should be able with a reflecting circle, to determine the difference of latitude within two or three seconds, which, relatively to the great length of the arc, (upwards of 53 minutes) could only occasion a small uncertainty in the distance, and of course, a much smaller in the elevation of the objects to be observed from its extremities. Experience
shewed that this degtee of accuracy could not be attained by'jmyself, or Lieutenant Herbertr, though I had much larger and more perfect minstrus ments than have hitherto bren used in the mountains, or in any survey on this side of India; and both of us had much practise as observerts. Whent I had less experience, I was more confident as to the accuracy which I thought might be obtained from celestial observations, frequently and care fully repeated; but now so far from being satisfied with surprisingly close' results', more close, than the Data' and instruments warrant, I incline to consider them, the effects of chance. I hold it to be the part of a faithful observer, to reject no observations, except where he is sure from some known cause, that they are bad. It has been said, and I think with justice, that when experienced observers, after taking all the pains and precautions in their power, find themselves embarrassed by discrepancies for which they cannot account, they are probably on the point of making some important discovery: at any rate though they may not be so fortunate, they may by making a fair disclosure, enable others who may view the subject in a more happy point of view, to do so. Even in the great English trigonometrical survey we see that the latitudes of principal stations taken by different stars when under favorable circumstances, and with powerful zenith sectors of five and eight feet radius, have some tines extreme differences of $8^{\prime \prime}$ or of 4 from the mean. Ours being taken with instruments of only six inches radius, and with telescopes of small power, may be expected to be much more discordant; of course they are so, but really not in proportion to the power of the instruments. Reference to the table of 61 latitudes taken by me at Belville, and the same number by Lieutenant Herdert, of stars on different sides
of the zenith, will shew that the differences are less, than could be expected, and how closely our mean results agree, indeed I think too close, but they are fairly stated. Though at Belville we could observe at our ease, it was not so on our lofty stations of the Chur', Surkunda, and Bairát amidst snow, ice and clouds, and exposed to furious iempests, which the astronomer in his firm observatory never experiences. But even the mean of Lieutenant Herberts's observations and mine, varied at the Chúr'; only: 4. which is less than could be expected--Two observers may chance to find the same result, and yet it may not be true. Whether it be so, or not, may be proved. To prove, whether, the difference of latitude of our large arc, Belville and the Chur, was certainly determined, I esta. blished a third or proof station on the fort of Bairat, the three places making a well proportioned triangle. Bairat is a small fort on the summit of a mountain in Jounsar. The station of observation is in the fort, and distant from Belville 2,59,129 feet, and 6,556 feet nearly above its level. There, as on the Chir and at Eelville, a great number of observations. for the latitude were made, by Lieutenant Herbert and myself at dif. ferent times, but with the same reflecting circle: but the mean of our observations differed $7_{p}^{\prime \prime *}$ At all the three stations, the angles and Azimuths were carefully observed, as will be shewn in the detail, yet we had the mortification to find that the latitude of Bairát, as deduced by strict calculation on the latitude and Asimuth arc, or base of the Chur and

[^30]Belville did not agree, with the mean latitude actually observed at Bairát, at it ought to have done, but differed from it, ten seconds; had it differed only three or four seconds, we should have been content to sacrifice perfect agreement to gain time, and indeed it must be confessed, that having regard to the object in question, an uncertainty of three or four hundred feet in sixty-one miles and a half miles was not much; it would affect the distances of the remotest snowy peaks only to the amount of about 600 feet, in the whole; and the nearer peaks, less in proportion: the heights would be very little altered, nor would the uncertainty even of 10 or 330 yards materially affect them, but the latitudes and longitudes; would be uncertain and unsatisfactory. Much chagrined at the disagreement, we were at a loss what steps to take; whether to consider the latitude of Beloille, as satisfactorily settled, and that of the other two stations as erroneous, or to divide the error equally between the three. Still suspecting: that some oversight had taken place, though none seemed palpable, we determined to try a second proof station, in hope it might throw some light on the subject: for this purpose the mountain of Surkunda was fixed on, which is distant from Belville, $2,86,212$ feet and 8,300 feet higher than it. There, latitudes, angles and Azimuths were observed, and again the ob; served, and computed latitudes differed, to the amount of some seconds, and in the same manner as at Bairát, the computed arc proving greater, than the observed. On the Wartú mountain, also which is distant nearly north from the Chur', 111,634 feet, and 1016 feet lower than it, a station was established, when operations, similar to those noted above, were effected: the best latiudes there were observed by Lieutenant Herbert, and though not so numerous as those at the Chúr, Belville, Bairát and Surkunila stations, vol. xiv.
agreed very well with each other. These gave the differences of the observed and computed arcs, in a contrary sense to those at Bairát and Surkunda.

Tuus perplexed, we despaired of arriving at the accuracy we aimed at, by the methods of differences of observed latitudes and Arimuths, and resolved, cost what time it might, to try to clear up the difficulties, by measuring a base. An operation which I always foresaw might be necessary, but which I wished to avoid if possible-mean time the trigonometrical affairs of the survey went on, combined with geographical researches, and at many commanding points, stations were established, angles taken, and pyramids as station marks buitt, which were alike necessary, whether it should be determined to abide by the results of the latitude base, or to resort to a measured line. This operation, if undertaken, could not be immediately effected, but would necessarily be deferred, till a convenient season, for this survey embraced many objects of geographical research, as well as trigonometrical and astronomical operations, which could not be carried on at the same time. An inspection of the map will shew the great extent of the country explored, and its rugged and mountainous nature, in traversing which, many difficulties present themselves, and it is only at certain seasons, that the snowy regions and upper parts of the courses of the great rivers can be visited. Even the principal stations are on high mountains. The Chur is higher then mount Elna, and the snow lays deep on its north side, generally till the commencement of the rains in June; the mountain is then shrouded in mist and clouds. The climate is too severe, to allow an observer to carry on his operations with success,
before the 20 th April, and from that time, to the end of May, is the best season for the work. Also, after the autumnal equinox, the air becomes clear, and the atmosphere is favorable for vision, until the middle of October, when storms of snow, render the station untenable. Therefore, to these two periods, must visits to the Chür be limited. The inconven niences of residing on such a stormy ridge, even at those seasons, are con siderable. The fury of the wind is great, and the cold intense; immediately after sunset water and ink are frozen-and our followers, who were necessarily much exposed, suffered severely from the cold: the ascent of the mountain, was long, and arduous, and the grain required for the followers, for a period of ten or twelve days, was procured with great difficulty from the distant villages in Sirmor and Júbal, and it is to be understood, that in these mountains, between the B'hagirat'hi and Setlej rivers, camp equipage, instruments, provisions, and every thing required, was carried on men's backs, except on one short military line of route, where mules lightly loaded may occasionally be used. Sheep it is true, are also used, as beasts of burthen, in the higher mountains, but tleey carry very small loads-similar inconveniences and limitations as to the season of residing on them, occur at the trigonometrical stations of Chundpir, Bairat and Surluncila, in a less degree, and in a still greater at Kédar Kanda and Úchalírí, which are higher than the Clait', in or crossing the passes over the ever snowclad Himálaya, and in exploring the sources of the great rivers which rise in their deep and gloomy chasms. These and many other impediments delayed the arrangement of this memoir, to a later period than I could have wished, and I must be allowed to state some circumstances which rendered the delay unavoidable on my part, and that
of Lieutenant Herbert: the first was want of assistance: two young oficers of engineers, were indeed appointed my assistants, and joined me in 1816, but their services were soon afterwards required with their own corps. In May 181\%, when on my way, to the source of the B'hágírathh', I was joined by Lieutenant Herbert, of the 8th Regt. N. I. who had been appointed my assistant, and to his valuable aid I owe much. He accompanied me in the journey from Reital to the source of the B'hágirathit. After the rainy season of that year, during the Mahratta war, Lieutenant Herbert joined his corps with the centre division of the army, and I marched with the reserve to Jeypur. In April 1818, we returned to the mountains. In October 1818, I was obliged to leave them, and to go to Calcutta, in consequence of a dangerous disorder, contracted by exposure to frequent changes of climate, in the expedition to the head of the Ganges. On my recovery, I went to Indore in Malwa, being employed on military duty, and after an absence of nearly two years, having obtained leave of absence, I again visited Seháranpir, for the purpose of meeting Lieutenant Hierbert, that we might jointly prepare this paper, in which we shall endeavour to shew, with as much accuracy as we can, the heights and position of a number of the Himálaya mountains. It is incumbent on me to declare, and I do it with much satisfaction, that if any share of praise, should be awarded to our labours, by far the greaier part of it, is due to the skill and unremitting exertions of Lieutenant Herbert, who carried on the survey alone, after I was obliged to leave the mountains in October 1818. The instruments I used being my private property, I left the most valuable of them with him. We had agreed that a base should be measured, and in conse-
quence of my unavoidable absence, this laborious and difficult task was executed by Lieutenant Herbert alone, and much of the apparatus was contrived by him, and executed under his inspection, in the manner he has described. The whole of the small triangulation for the purpose of correcting the stations of Chandpur and Surlunda, in which he used my circular instrument, was his work, and he shared equally with me in the trigonometrical and astronomical observations of the large triangles, at such stations as I visited, and also established, as we had agreed, on other stations judiciously situated, and carried on operations on them-and our geographical knowledge of the surveyed country has been much extended by him, not only in carrying various route lines of the Jahnave river above Bhairo-: gháti, and of the Setlej above Wongtú (which was the furthest point of my research in that direction in 1816), but also in tracing the Tonse river to its sources in the snowy range; ascending which, in October 1819, he crossed over the southern ridge of the Himálaya by the Ginas pass, ele vated about 15,700 feet above the sea. Descending thence, he came upon the valley of the river Baspa, a principal feeder of the Setlej, originating in that cluster of high peaks, which are situated in a re-entering angle of the range above Jumnotri, and from which in another direction are derived the more eastern rivers. From its confluence with the Setlej, he followed the course of the latter upward to Shipkee, a frontier valley of the Chinese territories. Shipkee is in latitude 31. 48.; 110 miles below Shipkee, the Seilej, which by the Bhoteas or Tartars there, is called Sang Jing Kanpa, (Kanpa signifying a river) receives another-stream, nearly equal in size; which strange to say, has no precise name. It is some times designated Spati, Maksang Spati, being the name of the Purgamah it flows through, and Yol. xiv.

Maksang signifying like Kanpa, a river. From the confluence of this river with the Setlej, he proceeded up to Lari, a frontier village of Ladac." In this part of his route he describes the mountains as entireo ly clay slate, bare of verdure and with litte snow, and evidently of inferior elevation, from all which may be inferred that he was at this time on the northern face of the great range. Having no particular motives for penetrating further and the season being advanced, he returned from this place though he had little doubt, as he says, that if desirous he might have proceeded even to Leh the capital of Ladac. The road being described as good, and the people not manifesting the same jealousy as those subject to the Chinese authority. But this is not the place to enter into geographical particulars: an inspection of the map, and comparison with those which are published in England, will shew what has been done by Lieutenant Hereert and myself in rectifying their errars. The memoirs I have to offer may be conveniently divided into the following súbjects.-1st. $\boldsymbol{\Lambda}$ description of the principal instruments used in the Trigonometrical and Astronomical Operations, and in the measurement of the base: these were;

1. A portable Asimuth, altitude and transit circle, made by Troughrox: this with some other valuable instruments from his private observatory, were presented to me by my relative Mr. W. Hodason, F. R. S. before I was appointed to the mountain survey. The construction and uses of this circle are described by the Reverend Mr. Woolhaston, in his Fasciculus Astronomicus. The diameter of the horizontal and vertical circles of my instrument, are each, one foot: the former is divided to five seconds, and is read by two opposite verniers,
the latter by means of micrometers, and is calculated to give elevations and depressions to two seconds. On the horizontal circle the divisions are cut in brass, and are very fine, butsso close, that we were often puzzled to. fix on the exact line of coincidence, for occasionally three lines on the vernier and limb appeared to the eye as equally coinciding: but in such cases we take the mean, and when there is time, the observations are sometimes repeated on different parts of the limb-an instrument of twelve inches is certainly not large, but a much larger could not be carried in the mountains. The weight is fifty pounds: with the two cases it weighs 116 pounds, and is carried in the hills on men's backs The telescope was of twenty inches focal length, and had three eye pieces of the powers to thirty or forty nearly, and the wires, ten in number, being five vertical and five horizontal, were of fine spider's web. The advantages which circular instruments possess over quadrants or other portions of a circle are too well known to require much description. They can be more accurately divided than the latter, and are capable of complete reversion in every direction. The index and collimation errors, are determined on the observed objects themselves, and when terrestrial angles, or the pole star are taken, it-may be done before expansion can have any effect on the instrument. Whenever practicable, the circle was used on a firm pillar of brick, or stone work erected for it. As to the adjustments, and levelling, they were always performed, as usual in such instruments, by the ether level, but to make the altitude circle describe a true vertical, I used the method of bisecting the pole star, when at its greatest elongation, first observing it by direct vision, and immediately afterwards its, image, with the faces of the circle, in both directions, and with the telescope
reversed in the $y s$; it then, describes a true vertical. This verification cannot be effected, except on calm nights. The circle was used by Lieutenant Herbert in taking all the angles of the small triangulation, and considering that it was the necessarily placed on a wooden tripod only, it performed well-at the great stations, Belville, the Chûr, Bairát and Surkunda, it had a firmer support. All the observations, as well horizontal terrestrial angles, as of altitudes and Azimuthe, were determined by us, both by the single and double elongations of the pole star, and at the principal station of Belville, with great care; and I trust with as much truth as it is possible to take them, with an instrument of moderate dimensions. The altitudes of the peaks were observed at several places, and at different seasons, and the mean taken, except where a depression had been observed. As the stations are far distant from each other, it is evident, that the elevations and depressions could not be taken at, or very near, the same time, with the same instrument, but when they were observed, the circumstances of weather, were not very dissimilar, and it is boped that the ratio of terrestrial refraction deduced, is sufficiently near the truth for answering the practical ends of the survey. As an instrue ment for taking zenith distances, the circle answers very well, when sheltered from the weather, but on the exposed peaks of the grand stations, we could not avail ourselves, as we wished, of its powers. I lost much time at the Chur, in trying to do so, but the winds by night, were so boisterous, that it was impossible to keep the adjustments perfect, and to use it in a tent, which is in continual danger of being blown away, distracts the attention; at the station of Belville in the plains, where I was more at my ease, I made tolerably good observations for latitude, with the altitude circle, though not so
good as I ought to have done: some of the best, I think, are those made on the pole star when in the meridian, by observing at the same time its elevation, by direct vision, and by reflexion in quicksilver, by depressing the telescope, then reversing the instrument quickly, the same is repeated, and eight readings are obtained by the opposite micrometers: after this method occurred to me, I had only an opportunity of trying it on one night, after which cloudy weather came on, and prevented the reflect. ed image being satisfactorily seen. Where the pole star is higher than it is Inere, I think very good latitudes may be thus taken: but at Belville the latitudes were generally taken by Lieutenant Herbert and myself, with the reflecting circle, as it was proper that the some instrument should be used at both extremes of the arc.
2. A mimenoute made by Berge. This instrument is the property of government, and was lent for Lieutenant Herbert's use. As the telescopes were necessarily of small power, and the verniers only shewed single minutes; this theodolite though good of its kind, was only used when the circle was otherwise employed, or could not then be transported. Lieutenant Herbert made the most of its limited powers, and as the eye may estimate a less quantity than a whole minute, he always repeated the horizontal angles on different divisions of the limb: he was obliged to observe the angles at the remote and lofty stations of Kcdar Kanta and Uchalarí, with the theodolite only, which will account for the sum of the three angles between those two stations, and those of the Chur', Bairuit and C"Fandpir, differing from 180. rather more seconds then they ought, though less than might have been expected; as will be seen in the notes. But when there is an epporVOL. XIV.
tunity, the circle will be taken up to Fedar Kánta and Úchalará. The former is 12,589 and the second 14,142 feet higher than the sea.
3. A reflecting circle made by Trouguton and marked No. 4 . I did not receive this particular instrument from Mr. 'roughron himself, but purchased it in Calcutta; though substantial and perfect in all respects, it does not appear to me, to have so high a finish as the more modern circles of this construction made by that excellent artist, and though it is rather larger, I suspect it may be somewhat inferior to them. स्Cery person conversant with reflecting instruments, knows the advantage which circles have above sextants, and it is needless to mention it here. When the altitudes of stars were observed, we always took them, on different nights, on alternate arches of the circle, and the sun in the same manner: the pole star only can be observed on both arches on the samee night: some times indeed when a star could not be taken on both faces, the index crrol was used, but always with reluctance. When the weather allowed of it, the stars were taken north and south of the zenith, as equally, as to number and altitude, as circumstances allowed. It will be seen by the lists, that the observations for latitude have been very numerous. They were taken with great care: no glass roof was used over the mercury, when it was possible to dispense with it: the closest corrections for precession, aberration, nutation, and for refraction, according to the state of the atmosphere, were applied to the altitudes, which were faithfully noted. With regard to re-fraction, the quantities direcied by the tables corrected for the barometer and thermometer were applied, but as it is not impossible that there may be peculiarities in the atmosphere on lofty mountains, which the usual rules will
not correct, we were anxious to divide the observations on both sides of the zenith as much as might be, though that could not always be effected. Those observers who fancy they can determine latitudes with portable reflecting instruments to the exactness of a second or less, will be surprised to see the discrepancies which our lists present, even at the Relville station, where we were not vexed by tempests and misis. It will be seen, that some of the results vary $10,12,15$ and more seconds occasionally on both sides of the mean; but when it is considered that in an instrument of six inches radius, iwenty seconds is a very small space, being only the $\frac{18}{2800}$ part of an inch, difficult for the maker to divide, and perhaps more so, for the observer to read, and that the telescopes are of small power, it seems hardly warranta: ble to suppose that any number of reflections can reduce the uncertainty to less than five or six seconds, nay perhaps double that quantity. Indeed if small instruments are capable of this accuracy, they do more than considering theirsize, can proportionably be expected from them, when we see that observations for latitude made with the most perfect zenith sectors of five and eight feet radius, and used by such skilfal obseryers as Coloneis Mudge and Lamizton, vary in some instances as much as eight seconds from each other, and by referring to the notes of those distinguished astronomers Messrs. Delambre and Mechain, who in the great survey of the French meridian used the repeating circle, it will be seen that the results of observations for latitudes taken from the same, and by different stars and on different nights, did occasionally differ from each ctice, twenty and even thirty seconds: though in the use of the repeating circle, these casual discrepancies are no doubt rendered of littie cis sonsequence, in the mean given by the very great number of
observations，which the peculiar construction of that instrument，enabled the French astronomers to take with great facility in a comparatively short time．On account of its portability and extensive power，I think the repeating circie，improved as its construction now is，by Mr．Troughton， would be an excellent instrument to employ in mountain surveys：though it is true that some extra calculation is requisite to reduce the oblique angles of objects not of the same apparent altitude．

Our English circles give the horizontal angles direcily，and no correc－ tion is necessary，but when they are of great power，they are very heavy and difficult to carry in the rugged mountains，and require firmer suppor－ ters than we can always conveniently make for thein．With regard to Troughton＇s reflecting circle，it is certainly an admirable instrument，and above all others，well suited to the purpose for which it is intended，i．e． the taking of lunar distances at sea or on shore，as well as for taking alti－ tudes．It may be thought that we were not so successful in making use of its powers as we should have been，but it will be seen by the close accordance of the observations of latitude made with it at Sehúranpur， By Lieutenant Herbert and myself，that if we could have been as well satisfied with the results taken in the mountains，we might have dispensed with measuring the base．At Sehárarprir we could observe at our ease，and the temperature was equable，but on the Chir the case was widely different，and I am much inclined to think that the great difference of temperature between the two places altered，by the effect of the contraction of the metal of the circle，its identity，if⿴⿱冂一⿱一一厶心夊
severe that we were obliged to keep fires in our small tents, while on the out side our ink was frozen, and unluckily we did not think of the precaution of keeping the circle as nearly as we could at an even temperature, by leaving it on the out side of the tent when we had read off the angle. On the contrary, as soon as we had observed the meridian altitude of a star, and registered it, we laid down the circle in the heated tent, until it was time to take another star, and as that operation necessarily took up some time, the limb and verniers being of different sorts of metals, might possibly expand and contract in contrary and uncertain dircetions, and cause error. Such may, or may not be the cause, and in justice to the instrument I state these circumstances, though $\mathbb{I}$ should think there is no need to make suppositions, which may appear forced, when it is considered, that the radius of the reflecting circle is only six inches, and that exact reading by candle light is not to be expected, and that there is a great difference between observing. calmly in the plains, and on the ridge of a stormy mountain, 11,529 feet above their level. At Bairát also the temperature differed from that at the Chur and Sehairanpier; to say nothing of the possible uncertainties of celestial refractions on the two mountains.

For observing the eclipses of Jupiter's satellites, and thence determining the longitude of the first meridian, I used an achromatic refracting telescope of forty-two inches focal distance, and 2.7 inches aperture: it was made by Dollond, and had rack work and every adjustment. It was my own property. Lieutenant Herbert used one of the same dimensions, belonging to government, it had no rack work, but was a good instrument, and also made by Dollond: he had also a good chronometer, public provol. xIV.
perty, made by Baraud, and Ihad three very fine ones, my private property, made by Brockbanks and Monineux. The list of longitudes annexed is important, as the first meridian is settled from twenty-four immersions and emersions of the first satelite, being a much greater number of observations than have I believe ever been taken in the upper provinces, to fix so interestoing a point. It was known to the late Surveyor General, Colonel Colesввооке several years ago, as well as to myself, that the longitudes assigned to Haridwar and several places in Rehičhand, by Mr. Reuben Burnowes, were too far to the west by about seven miles. The name of Buritowes deservedly stands high, as a learned mathematician, as well as anexpert astronomer, but it is many years since he took his observations in Rohilc'hand, and at that time the astronomical tables were less perfect than at present, and Mr. Burrowes used a telescope of small power, and I believe took a very smalli number of observations of the satellites in comparison with ours. I do not presume to disparage the operations of so distinguished an astronomer, so far as his means of accuracy admitted, but it is well known that the due observation of the eclipses of the satellites, and thence determining differences of longitude, is by no means difficult to any person moderately skilled in practio cal astronomy, so that those who have the best modern instruments and tables, and can take the greatest number of good sights, can give the most ácurarate results.

Tue pyramid which I built at the irigonometrical station on the Chuir in 1816, is the first meridian :-
Its longitude being $77^{\circ}$. $28.30^{\prime \prime}$.
Its latitude $30^{\circ} .50^{\circ}$. $36^{\prime \prime}$.

Height above the sea 11,529 feet,
but the highest rocky point of the mountain is 350 feet higher than the observatory.

As to barometers; we were deficient in those useful auxiliary instruments, thosewe had, being frequently broken: it is obvious that barometrical deductions cannot be put in competition with geometrical, conducted as the following: were:-and that they cannot be used on the great snowy praks which are not to be ascended: No barometrical deductions are admitted into this paper, except the height of Belville or Sefíairanpuir above the sea, as there was no other method of determining it: I believe it to be near the truth, probably erring in defect rather than excess. I may mention however that by co-temporary observations with two barometers by Lieutenant Herbert on the Cinír, and myself at Sohäranpúr, the difference of level comes out 11,581 feet, the true or geometrical height being by elevation and depression 11,529 feet, a trifing difference, attributable perhaps to chance. We made those barometers out of common weather glass tubes and filled. them ourselves. We frequently amused ourselves by taking differences of level by the method of observing the boiling point of water as shewn by the thermometer; this when common thermometers are used, is of course only an approximation; but even with those short and imperfect intruments may occasionally be of comparative use. The results were often surprisingly close, and the greatest error we noted, was once about four hundred feet, on a true difference of altitude of 7000\% one might expect it to be far greater when it is considered what a small quantity one degree of Farenheit is on a thermometer of eight or twelve inches long. I think that Dr.

Woolaston's improved thermometer will supercede the mountain barometers altogether. It has every advantage. II may here mention that on the 20th of June, 1816, when in the snowy pass in Kanaur, it occurred to me to put the thermometer to this use, which I did, and the next day, after crossing over the ridge of the Himálaya, I mentioned the circumstance in a letter to England, and observed the advantages to be derived from it, if thermometers could be made portable, with a sufficiently long scale. I was quite ignorant then of Dr. Woolastonss instruments, or that a thermometer had ever been thought of, as a proper instrument for measuring heights, and indeed it is very strange, how little it has hitherto been applied to the purpose.
4. The chain which was used as a standard of comparison in the measurement of the base was made for me by Trouguton. It is of steel, one hundred feet in length at the temperature of $6 \dot{2}^{\circ}$. and is composed of twenty links, each being five feet, they are strong and little liable to bendo It has the usual apparatus of forks and pins to keep it stretched, and index plates, intended to be fixed to a stand, to mark the termination of each chain's length. I much regret that I had not two such chains, that one might be used in the measurement, and the other kept as a standard, but as there was only one, it was thought best to use it only as a check on the cedar rods, as is fully detailed in the sequel,

The above are the principal instruments used in the trigonometrical and astronomical operations of the survey, intended to determine the positions of the snowy peaks, but in tracing the numerous routes, and filling up the interior of the map, various instruments, adapted to the purposes, were employed, of which it is not necessary to give detailed descriptions.

I shall here conclude this introductory notice, which I am aware is already too prolix, and that from an anxiety to exhibit, as well the advantages we enjoyed, as the difficulties to which we were subjected, in the course of the survey, several repetitions occur: still I hope these will be excused, for in settling finally, which it is hoped the present operations (combined with Captain Webs's) will do, the heights of some of the principal Himalaya peaks, a point, on which even so great an authority, as De Humbole, has fallen into error, we have imagined, that we could not be too explicit in describing the instruments, and in detaling, not only our original observations, and the methods of calculation, but even the several steps, of the process itself, from which the results are deduced. We have been aware, that it is only this full and candid disclosure, in which many things are met with that might have been glossed over, that can give a conclusion of so much inierest, any weight; and while we deprecate the theorists pronouncing too decidedly on the value of results, which may appear to him, much too discordant, we feel confident that in the eyes of the practised observer, who will consider the nature of our instruments, and the difficulties with which we had to contend, these very discrepancies will prove our strongest claim to his confidence.

## Observed Latitudes of Stations.

1. Belville,-By Captain Hodgson.


Latitude of Belville,-Continued.


By Lieutenant Herbert.


Latitude of Belville,-Continued.

2. The Chirr,-By Captain Ifodgeono

1816,


Latitude of the Chirr,-Continued.
By Licutenant Imerbert.


Latitude of the Chir,-Continued.


Latitude of the Charr,-Continued.


RECAPITULATION.

| The latitude by Sirius is, | $30^{\circ} 50{ }^{\prime} 91 \cdot 1$ |  |
| :---: | :---: | :---: |
|  |  | 20-6 |
| $\propto$ Ceti, |  | $11 \cdot 1$ |
| The Sun 16th, |  | 93.7 |
| Ditto 17th, |  | 15.0 |
| Ditto 18th, |  | 22*2 |
|  | 30 | $5020 \cdot 4$ |
| Place of observation S. of Pyramid | + | 02.1 |
| Mean of 108 observations, | 30 | 5092.5 |



Latitude of the Chuŕ,-Continued.

| Date. |  | Sun or Siar. |  | With what Instrument. |
| :---: | :---: | :---: | :---: | :---: |
| 1817, October, | 18 | $\begin{array}{r} \gamma \text { Draconis, .... .... } \\ \text { Polar Star, ........ } \end{array}$ |  | Reflecting Circle. |
|  |  |  | 11.5 13.8 |  |
|  |  |  | 02.4 |  |
|  |  | Spica, | 10.7 |  |
|  |  | $n$ Ursx Majoris, . .... | 22.0 |  |
|  |  | a Libræ, ........... | $22 \cdot 2$ |  |
|  |  | $\beta$ Ursx Minoris, ...... | 22.1 |  |
|  |  | \& Serpentis, ......... | $4952 \cdot 3$ |  |
|  |  | n Ursx Majoris, ..... a Libra, .... | 5011.3 18.0 |  |
|  |  | B Ursx Minoris, ..... | $17 \cdot 3$ |  |
|  |  | a Serpentis, ........ | $31 \cdot 6$ |  |
|  |  | \& Herculis, . . . . . . . . . . | 36.4 22.3 |  |
|  |  | $\propto$ Ophiuchi, | 4958.7 |  |
|  |  | \% Draconis, .... . . . . | 5007.9 059 |  |
|  |  | $\gamma$ a Aquix, Ditto, ............... | 4958.4 |  |
|  |  | Spica, ............ | 5028.6 |  |
|  |  | \% Ursx Majoris, a Libre, ..... | 18.9 |  |
|  |  | $\beta$ Ursx Minoris, | $07 \cdot 6$ |  |
|  |  | \& Serpentis, . . . . . . . | 358 27.1 |  |
|  |  | \& Herculis, | 292 |  |
|  |  | $\propto$ Ophiuchi,.. | $13 \cdot 1$ |  |
|  |  | \% Draconis,...... | 11.5 |  |
|  |  |  |  |  |
|  |  | Place of observ. S. | $30 \quad 5016.2$ |  |
|  |  | of Pyramid, ..... | -_-n-1 |  |
|  |  |  | 305018.3 |  |

## 3. Bairát.

| March, | 30 | a Hydræ, ........... | $30^{\circ} 34^{\prime} 10^{\prime \prime} 1$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Regulus, . . .... .. | 02.6 | Rellecting Circle. |
| Apric $^{\text {d }}$ | 2 | Spica,............. | 34.5 | c |
|  |  | Antares, .......... | 31.5 |  |
|  |  | Regulus, .......... | 10.0 |  |
|  |  | $x^{\text {S Serpentis, . . . . . . }}$. | 05.6 |  |
|  |  | $\approx$ Ophiuchi, ......... | 17.5 | . |
|  |  | $\beta$ Ursz Minoris, ..... | $10 \cdot 1$ |  |

Latitude of Barrát,-Continued.


Latitude of Bairat,-Continued.


## 4. Surkunda.


£atitude,-Continued.
5. Whatriú.


## RECAPITULATION.

1. Belville, .....by Captain Hodasong.............. $29^{\circ} 57^{\prime} 09.5$


## - Lieutenant Herbert, (Sexiant) <br> 22.5

 Ditto, (Reflecting Circle) $18 \cdot 3$3. Bairát,.... .... .... .... .... 303426.2
4. Surkunda, .... .... .. .. 302404.6
5. Whartús,.. .... .... .... 3114350

## Longitude of the 1si. Meridian of the Survey.

The methods resoried to for determining longitudes being rather less susceptible of accuracy than those for determining the latitude, it has been deemed adviseable to reduce all the observations, made for the former purpose, to one point. Having thus obtained a mean result, the differences of longitude of the various places of the survey being applied to it, their absolute longitude from Greenwich becomes known.

IT is not our purpose here to enter into any comparison of the relative degrees of value, which the several methods of determining this point may possess. It may be sufficient to state, that finding in practice, the inmersions and emersions of Jupiter's satellites, as compared with the nautical almanack, afforded us very close results, and being in possession of instruments fully equal to such a course of observations, we have naturally leaned to them, not omitting however any opportunity, when in a convenient place, of making also other observations. It would be no doubt desirable that these shoutd be compared with others made at a place, the longitude of which is well known. This however cannot be Greenwich, because the number of immersions and emersions visible both in this country and at Greenwich is very small, and of these, few can be observed at that place, owing to the uncertain climate. Mradras therefore naturally presented itself as more properly adapted to this purpose. The seat of an observatory of the Honorable Company, its longitude mast be known to
the greatest accuracy, short of trigonometrical certainty, and the difference of longitude being so small, while the climate is equally favorable, there was a likelihood of finding a corresponding observation for every one made here. It was with these.ideas, that a list of a number of the immersions and emersions of Jupiter's satellites, was forwarded to the Company's Astronomer Mr. Goldingham, who very readily furnished us with his own observations of the same phenomena. A second list was after-, wards sent, but his answer has not yet been received, and as in the first the number of observations is in no degree comparable to the total number made, it has been thought most adviseable for the present, while waiting a more correct determination, to present here the results obtained from a comparison with the Ephemeris. It is to be noted, that whatever error may be occasioned in the longitude, as deduced from emersions, owing to want of power in the telescope, will be counteracted by an equal error im a contrary sense affecting the immersions-so that supposing the tables tolerably correct-a mean of the results of emersions and immersions, will we think be found not far removed from the truth .

The differences of Iongitude are in most cases found either wholly, or the chief part, trigonometrically. In a very few instances, and for very small distances, the route survey checked and corrected, is necessarily taken. The error in this part of the calculation can in no single case amount even to 4 , and on the mean must be insensible.

Immersions of Jupiter's 1st. Satellite.

| Dute. |  |  | Place of Observation. | Lonsitude of 1 st. Mcritian. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1814, \\ & 1817, \end{aligned}$ | March, April, | 9 | Déhra |  |
|  |  | 10 | Geiráh, | $\begin{array}{llll}5 & 99 \\ 5 & 09 & 56\end{array}$ |
|  |  | 17 | Sicrí, . . . . . . . . . . . . . . . . . . . . . . . . . . | 50920.9 |
|  |  |  | Khursali on the Juinna, . ................ | 509 92.6 |
|  | May, | 10 | Reital on the B'hagirathi, | $50948 \cdot 0$ |
|  |  | 12 | Ditto Ditto, | ${ }_{5}^{5} 09954 \cdot 5$ |
| $\begin{aligned} & 1818, \\ & 1819, \end{aligned}$ |  |  | Chacarwìlra, ............................. | 50952.8 |
|  | April, | 5 | Nahan, .............................. | $50933: 9$ |
|  |  | 18 | Bel in Jounpúr | $50921 \cdot 6$ |
|  |  | 25 | Kalsí, ..... | $50926 \cdot 5$ |
| 1820, | June, July, May, | 3 | Suura on the Tonse, | 50950.0 |
|  |  | 5 | Kotgher, . .................. . . . . . . . . . | 50948.9 |
|  |  | 6 | Bysúli in Bangerh, .... ............... | 509 59، 5 |
|  |  | 29 | Nyuvalin Bamand, .................... | $509 \quad 57 \cdot 6$ |
|  |  |  | Mean of 14 Inmersions, | 50941.9 |

Emersions.


'An account of the measurement of a Base Line of 21,754.8 feet.

By Lieutenant J. D. Herbert, 8 th Regr. N. I.

Captian Hodgson having in what precedes, referred to me for an account of the manner in which the task that devolved on me, (in consequence of his bad state of health) of measuring a base, has been executed; I propose in what I have to say, first, to give a brief description of the instruments and methods of using them; and to subjoin a table containing the particulars of the measurement, with the resulting length as properly reduced. These are to be followed by details of a small triangulation, founded on the base; with the length of one of the great lines determined therefrom.

In the execution of this measurement, I had to contend with great difficulties; owing, to the want of assistance. I am of opinion however that the error of the measurement, does not exceed two feet; an uncertainty which will only affect the distances of the most remote peaks, by about sixty or seventy feet. As the fruit of my experience, I may mention; that I would not attempt a similar operation with wooden rods, without such metallic additions, as should detect and register the alteration in their length, arising from atmospheric changes.

Ir may be thought that with a chain such as has been described in Captain Hodgson's account of the instruments, there was required little consideration, as to the mode to be fnllowed-all that was necessary, being to
have coffers and stands made for it. But the employment of the chain in this way would have evidently consumed an immense period of time, not only in the operation itself, but still more, in the preparation of the coffers and stands, the latter requiring to be made with elevating screws. This alone was a sufficient objection; even supposing the great delay it would have caused, none. For in this remote part of the country one such stand could not be properly executed, if at all, without incredible difficulty What then would have been the case when there were twelve or fourteen to be constructed. To this must be added the consideration, that I was alone in a work which requires at least two to execute it properly. . From the beginning therefore I relinquished the idea of employing the chainexcept as a standard of comparison, for which purpose it was invaluable.
2. When I had rejected the chain it appeared that the best substitute would be a set of rods constructed of pine wood; the comparative unalterability of which has been long known. Such rods have been employed by some philosophers in the measurement of a degree, particularly by $\mathrm{L}_{A}$ Caille and General Roy. It is true that General Roy rejected the measurement made with them, in consequence of the changes which he found the greater or less quantity of moisture in the atmosphere produced in their length, yet when we look at the small error which a re-measurement of this base with glass rods detected, we shall be satisfied that for the purpose I contemplated, pine rods are capable of sufficient accuracy. He found the difference between the two measurements only two feet, and this in a distance of $5 \frac{1}{2}$ miles, and I certainly thought so small an error as this, could never be alleged as an objection to the success of my operation.
indeed Thad laid it down, that if sould obtain a degree of accuracy, which would leave not more than an uncertainty of one foot in 5000 , it would be as much as I could hope for, and sufficient to ensure all the advantages, for the attainment of which the matasurement was undertaken.
3. The next potat was to setle in what maner the rods were to be constructed. Thes was ar coume, to depend a good deal on the nature of the stands which cuuld be onained. Geaeral Roy's rods were twenty feet in length, and trussed vertically, and laterally to prevent bending-pieces of ivory, with fine lines drawn on them, being inserted in the extremities for the purpose of making the contact perfect. The method of contacts was however found to consume too much time, and metal buttons projecting from the ends of the rods-were made to butt against each other. In using rods of this description, heavy stands with elevating screws were indispensible These have already noticed were out of the question, and therefore this. mode of construction was necessarily abandoned. Foreseeing from the first, the great time that it would cost to prepare stands of any description, I had contemplated the possibility of doing without them, and in the followo ing manner:-Supposing a number of stout pickets driven into the ground at distances of twenty-five feet, I thought a rod of this length, well trussed, and furnished with points, forming in some measure a large beam-compass, might be used for setting off accurately this length from picket to picket. This method would have been sufficiently expeditious, and would have required hardly any apparatus; but on mature consideration I feared it would be atiended with more error than is allowable. The measurement being conducted so near the ground would have occasioned great vol. xiv. 3 M
uncasiness in the position, and it is well known how essential an easy position is to correct operations of every kind. In using points too far laying off the length of the rod, it was evident, that a little uncertainty would prevail. The great length would have made it also unwieldy, and where the position of one of the points was necessarily to depend on the intelligence, and care of a native, it was feared that much accuracy could not be expected. This idea was therefore abandoned, but I have thought proper to notice it here, not only to shew the difficulties I had to contend with, but also as thinking it might be found useful on other occasions, where only a tolerable degree of correctness may be desixable.
4. Although I saw the inconvenience of points, acting as I was without a coadjutor, yet I did not immediately give up the pickets; indeed the objections and diffeulties that interfered with any plan depending on stands, were strong motives to do if possible without them I therefore considered, if the method by pickets might not be so far modified as to be executed by contacts instead of points. Ir recollected the apparatus which the Frenel philosophers had employed on a similar occasion, where they had used netallic rods, placed in a line, but not in actual contact, the shock of the latter being supposed likely to cause considerable errors, To determine the distances of the rods or rulers, there were small slips of metal sliding in grooves called by them Languettes, and furnished with verniers, by means of which they could determine the exact quantity between the rods to the greatest nicety: such an apparatus I saw was applicable to wooden rods, supported on pickets, placed nearly but not quite in contact. In this way the position would be much easier, and the accuracy of the work
depend less on it. Indeed so unexceptionable did this plan appear, that I determined at once to employ it; and the only motives that afterwards induced me to change my mind, were, the insufficiency of the seasoned wood, Ihad brought down from the mountains to construct three trussed rods of that length or even two; and a hope, that by another method which I had just fallen on, I should be enabled to get through the work still more expeditiously than by this, particularly as I should lose less time in the preparatory operations. This new method which was the one finally employed, I now proceed to give an acconnt of.
5. The piece of wood out of which $r$ was to construct the measuring apparatus, was twenty-six feet in length and about six inches by four. It was a piece of that beautiful species of pine, called by Dr. Roxburgh Deodara,* the wood of which the mountaineers consider indestructible. It had been taken out of a dwelling house which had fallen into decay, and as the houses in that part of the country last a very long time, this piece, which had served as a beam, could hardly fail of being well seasoned. Being so small however, it was quite out of the question to have more than one trussed rod out of it, and as I saw that with less than three rods, the measurement could not be depended on, I resolved to dispense with the trussing, by which means I should have four of twenty-five feet each, making one hundred feet or an equivalent to the chain. A rod twenty-five feet in length, and $1 \frac{3}{4}$ inches by $1 \frac{1}{4}$ (as I was obliged to construct it), it may be easily conceived, must be considerably too pliable. It was therefore

[^31]necessary to have them supported at distances of $6 \frac{1}{4}$ feet. The plan I hit on for constructing these supports, was I think happy, allowing as it did, great facility in laying and adjusting the rods of the same hypothenuse, being favorable to expedition, requiring little art in the making, nor much timber, nor even that well seasoned, and above all, being such as might be quickly constructed.
6. These supports are represented Plate I. figs. I and 2. Whey consisis of an upright, of from six inches to three feet in length, fashioned square, to within two inches of the bottom, where it has six equal faces: on the alternateones, are inserted legr at right angles, in all three, and these legs are each armed with a strong iron prong for taking hold of the ground, when laid for the rods. These uprights are about three inches square, and there is a levelled groove on one face, reaching nearly the whole length in which slides loosely, a piece, having its upper end fashioned into a fork (fig. 3) the prongs of this fork are broad, but short and separated about three inches. It is in this fork that the rod is to mest.

畀. Turs sliding fork is to be steadied, when brought to the proper height by means of thin wedges driven between it, and the sides of the groove in which it slides. The uprights being of three sizes, six, eighteen and thintysix inches, and the stems allowing of a correct adjustment to all the intermediate heights, it is evident that these supports are equal to all the inequalities of ground, that can possibly occur, and this I found to be the case, carrying on many of the hypothenuses to 1000 feet, and this on a surface so very unequal as the Duin, the fall of which too in four miles is between three and four hundred feet.




Fig. 4 .sheving the Arvangement of the interlocking Nonius attached to cadh Pair of Rods:


Fig' 5.sheering the Arrangement of the Languettes betwen the Pairs. a.a. sliding ternier b.b. 2trtical tongue of Brafs aqainft whiche the Virnierprefses

8. The rods which are rectangular prisms twenty-five feet in length, and $1 \frac{1}{4}$ by $1 \frac{3}{4}$ inch; were meant to be placed in pairs; the two pairs being separate, and one remaining fixed, while the other pair should be brought forward. To support each pair of rods, nine stands were required, being placed at distances of $6 \frac{1}{4}$ feet. Thus for the four rods, were wanted eighteen, and nine to be laid ready for the rods that were to be next brought forward, to which adding ten more, five large and five small for unexpected inequalities, the total number is thirty-seven. Though this be a large number, yet the quickness with which they are constructed, more than makes amends, so that where wooden rods are used, I do believe it to be one of the most convenient methods of supporting them that I have any knowledge of.
9. The rods which formed the pair, were placed interlocking (fig. 4) the ends being cut to allow of that arrangement. But the pairs being placed separate, so as to allow of having a fixed point on the ground; required some means of measuring the distance between them. I adopted the same method as that alluded to (art, 4). The fixed or hinder pair had attached to their anterior end, a brass cheek projecting $\frac{1}{2}$ inch beyond the wood, to which, it was secured by two screws, passing through the rod, and clamped with nuts. The fore pair again had attached to their upper surface a brass plate on which a groove was fashioned, a slide moved freely in this groove and could be pushed out so as to touch the fore edge of the brass cheek belonging to the hinder or fixed pair of rods. The quantity being measured by a Nonius. This apparatus is represented by fig. 5 .
vol. xiv.
10. Tue rods being so long and thin were necessarily extremely pliable, so that supposing the forked slides of the stands to be laid quite correctly in the hypothenusal plane and the rods consequeatly adjusted in one sense, still it was by no means likely they would be correct with respect to the vertical plane; without which it is evident the distance between the extremities of the rods must be contimally changing. T, grard against this error a brass wire about ${ }_{40}^{3}$. of an inch diameter, was stretche along the middle of the rod, sufficiently lighit to leave no doubt of its straightuess of direction. At convenient distances small flat bridges were attached to the rod of the same height as the wire, and in their middle a narrow groove of about $\frac{1}{10}$ of an inch. The rod was casily brought into such a position by means of small wedges pressing against the prongs of the forked slides, that the wire lay freely in this groove without touching either side of it. The rod was then known to be straight. This wire had also a second use, and no inconsiderable one. The forked slides were to be brought in to the hypothenusal plane by a boring telescope, placed on the hinder rod, the adjustment being made by means of a small cross of wood, the transverse piece of which was fixed at exactly the same height as the cross wires of the telescope, when placed on the rod. But it was found that this manner of adjusting the forks was not entirely satisfactory, as there was always a trifing deviation in most of them. The reason of this will appear evident if it be considered that the slides being raised or depressed by jirks, were necessarily very diffcult to ke get quite correct. This difficulvy had been foreseen from the first, and indeed the chief object of the wire was to correct this defect. Although it be certain, mathematically speaking, that no wire or cord stretched between two supports can ever be perfectly
even or free from a slight bend downward: yet when the tension is great, and the weight of the string little, its deviation from the line joining its two extremities, may be so small, as to be inappreciable by sense. The brass wires already mentioned ware thin, and they were stretched by a weight a little short of the maximum, they were capable of bearing. They may therefore be supposed to have been rectilineal.* The small bridges already noticed being of the same height as the wire at its extremities, and the groove allowing of the wires being depressed in the case of the rod lying. uneven, it was seen immediately by the position of the wire, whether the rods were situated in the intersection of the hypothenusal and vertical planes, and if not they were easily brought into the required position by means of the small wedges already noticed, applied under and on either side of them. Perhaps it will be said, that this method was troublesome and consumed time; no doubt it did: but certainly not so much, as the employment of trussed rods and stands with elevating screws would have done-and indeed wher my people began fairly to understand what was meant, I got through the work quick, and found on passing along the line of rods hardly ever cause to touch the adjustment nuyself. Fig: 6, represents this contrivance on a large scale.
11. Ir has been already noticed how small the error of pine rodis was found by General Roy. His method however of comparing the rods, several times during the day, with a standard, was in some measure

[^32]the reason. As I had neither the facilities nor the funds to allow of my conducting the operation in the sa:ne style, II saw that some check was required, to guard against any very great change in the length of the rods. To compare them several times a day, would have been a means of delaying excessively the operation, especially as having no one I could depend on, to afford me any assistance, added to which, I had no materials of which to construct the standard rod, except wood, and then I had no means of guarding it against the effects of the weather. It is true there was the chain, (and an invaluable standard of comparison it proved) but to have compared the rods with it daily, even once, not to say several times, would have caused so much delay, as must have deprived me of all hopes of finishing the work, within any reasonable period. To lay off the length of the chain it was necessary to insert firmly into the ground, a draw and a weigh post, and this consumed much time: again without stands and coffers, it was the work of half a day to get the chain correctly laid. It was indeed a consideration of these difficulties, that made me originally abandon the idea of using the chain in the measurement, and yet in practice, I found them much greater than I had imagined. As therefore it was quite out of the question, comparing the rods often with the chain, I thought of the following plan of detecting any changes in their length, arising from variations of temperature or humidity.
12. The original idea of this plan was unexceptionable, and if it had been executed, would have stamped the measurement with every appearance of accuracy. Unfortunately however I was tempted to modify it, in consequence of some difficulties that occurred, and by this modification an




Fig:9.

uncertainty* has been occasioned, small it is true, but still greater than need liave been. My first idea was to attach to the wooden rods, thin iron or brass slips, either of an equal length or something shorter-by means of which, and a thermometer, it might be seen whether and how much the wood had been affected in length. The modified plan was to construct a machine, which I afterwards distinguished by the name of a comparator, and by means of which, I thought the changes which the wood - might undergo, would be detected with as much certainty as those in metal, by means of the thermometer. In forming this judgment I overlooked however a very essential difference-the homogeneity of the metal, and the want of that quality in the wood, which circumstance causes so much uncertainty, that judging from experience I would say, that no two pieces of wood will lengthen and contract in the same manner and degree for any length of time. Fig. 7, (Plate II.) gives a viev of this comparator, as finished, and figs 8 and 9 , explain certain parts referred to, in the follow. ing description.
13. IT consists of a frame of wood, supported on four legs, strengthened loy cross pieces, so that in lifting, no alteration of figure takes place. To this frame is screwed a wooden piece eight feet in length, and of the same thickness and breadth of the measuring rods, represented by figs. 8 and 9 . To it is attached, about an inch above it, a brass cylindrical rod of the same length, by brass rings which screw into it. To the last ring marked $a$, the

[^33]brass rod is firmly fastened: in the others, it plays loosely, and is free to expand or contract. The end $b$ has a pin $c$ passing through it vertically, which presses against an index of brass $d$, that moves over a graduated are, and thus points out the alteration in the relative lengths of the wood and lorass, from time to time. The absolute change of length in the brass being known by the thermometer, and the received rates of expansion, it follows; that the actual change of length in the wood becomes also known. It is hardly necessary to mention, that the wooden piece A B is only fastened at one end, being free to contract or expand between wooden studs that prevent its warping.
14. The index $d$ is kept up to the pin, when the brass is contracting, loy means of a small spring, which in every situation keeps it in accurate contact with the pin. The point where the pin presses, is within $\frac{x}{2}$ an inch of the centre of motion, while the index extends 12 inches beyond it. By this means the minutest changes are discovered, being increased in a ratio of 24 to 1 , and such was the sensibility of the instrument, that scarcely for 10 minutes did the index ever remain stationary. This instrument I called a comparator, because it served to compare the length of wood, with that of brass, and therefore to detect any changes in the former. As the wooden rod of eight feet ( $\mathrm{A} \mathbb{B}$ fig. 8), was cut out of the same piece of timber as the measuring rods, I did at first imagine that it would prove a very satisfactory means of doing away the objections to wooden rods, arising from the effects of the weather in altering their length. The result was not however answerable to my expectation.
15. The remainder of the apparatus, consisted of a plummet and tripod, for marking the point on the ground, where the measurement left off, and allowing it to be found readily the following morning. Fig. 10 is a representation of this. The piece $\mathbf{A B}$ being moveable in the direction of the groove $a b$, and also turning readily on the screw $c$ as a centre, was easily brought into that position, in which, a notch cut in the piece of ivory, $d$, should correspond exactly with the wire of the plummet suspended in water, and hanging from the tripod of a theodolite, placed in advance of the rod. The distance of the wire from the rod was determined by means of an ivory scale. This plummet was also useful, when it became necessary to rise or fall at the commencement of a new hypothenuse.
16. Tue flags which were used to aligm the base, and the pickets which were put down to mark every 500 feet, had nothing remarkable or requiring . description. The flag stafi (fig. 11) $48 \frac{3}{4}$ feet in height, which marked one extremity of the base, consisted of two pine spars perfectly straight, and joined together by means of an iron collar. It had four braces to set it truly perpendicular, which was done by means of a plummet weighing two pounds. When adjusted, the stress was on the braces, and not on the stags.
17. These comprised the whole of the apparatus used, with the exception of the boring telescope, which was one, having a power of about six, with cross wires. The theodolite mentioned in the account of instruments, was used in determining the inclination of the several hypothenuses-the observation being made on both faces, and the circle in the alignment of the
base. As the instrument answers as a transit, and is well known, there is the less occasion to say any thing, as to the mamer of employing it.
18. Tue base having been aligned and cleared, and large pickets, numbered regularly, driven into the ground, every 500 feet, I commenced the measurement on the 2d. February, by laying the first pair of rods in contact, with the wire of a plummet, brought carefully over a point on the picket, marking the extremity of the line. So many dificulties attended the operation at this early stage, while none of my people understood clearly what was required from them, that to lay this first pair of rods occupied me nearly an hour, although afterwards, when more perfect, ten minutes generally sufficed, and frequently the pair was adjusted and entered in six minutes. Ifound that I was even myself a little confused at first, before I had completely settled the arrangement, by which I was to proceed in the different operations which had to perform. For these reasons I was not sorry to find afterwaids when I came to observe the angles, that it was necessary to reject a small piece at the commencement, I had, after marking out the base, wished to add to it. This piece vas remarkably low, the declivity being about $5_{5}^{5}$, and when the circle was set up, it was found impossible to view the flag staff at the other extremity. In the first instance, the base had been marked out, and the extremity fixed, as funally chosen, and in going on with the measkement as commenced from a point 4.50 feet back, it was most carefully noticed, by what quantity, the end of the last of the rods falling here, overshot the large picket, which had been driven into the ground, to mark the originally chosen extremity. The measurement of this 450 feet, which comprehended more difficulties than any other portion of the
base, served as a kind of exercise, to instruct us fully in the nature of what was to be done, and enabled me to determine precisely the method, in which I was to carry on the operation. As it has been rejected, there is no occation to give the details, but I thonght proper to notice the circumstance, to shew that when the line finally chosen, was actually commenced upon, we had acquired some degree of practice as well as confidence.
19. Before entering upon the details of the measurement, I may briefly notice the order in which the several parts of the operation were performed. A cross of clean fir $3 \frac{1}{2}$ feet in height, was first set up at the distance of 500 feet, being placed on the picket, in advance, forming a point in the alignment of the base. The stands were then ranged as near as the eye could judge, in the direction of it, and their distances regulated by a rod of the proper length: by means of a small stick of fir, with a cross vane, held by one of the poople in the fork of the stand; three of them (that is the two outer and middle one), were brought correctly into the alignment, with a boning telescope resting on the preceding pair of rods. The small stick carrying the vane, being made to cover the cross, resting on the picket, by moving the stand to right or left as might be required. The forked stems were at the same time regulated, as to height, by bringing the cross vane, to cover the transverse piece of the cross on the picket, which had been originally regulated to the height, at which, it was thought the hypothenuse could be best carried on. The telescope was momied on a wooden bed, which gave it an elevation of about three inches, above the surface of the rod. The cross vane of the small stick used for adjusting the forlss of the stand, was set to such a yol. xiv.
height as was equal to this quantity, t the depth of the rods. From this arrangement the line traced through the air, and the inclination of which was observed, was really above the surface of the rods, three inches, but parallel to it, and care was therefore taken, before removing the first set of rods of any hypothenuse, to adjust the theodolite on a stand with an elevating screw, so that the height of the axis of the telescope, when directed to the transverse piece of the cross placed on the picket, should be exactly equal to this quantity. Three stands out of nime (the number required for a pair of rods) being thus adjusted, that is the two outer and the middle one-both as to the alignment and hypothenusal direction, the others were quickly brought to correspond by means of a strong twine stretched along the nine. The stands being moved to right or left, and the forks raised or lowered till they were all so adjusted, that the twine lay in the middle of the forks and barely touching them. The hinder pair of rods were now brought forward, to be laid on the stands previously adjusted. It has been already noticed in the description of the rods, that the two pairs were perfectly independent of each other, and generally one inch asunder. This afforded a sufficient precaution against the fixed or fore pair being moved, in bringing forward the hinder, but to guard against the possibility of such a thing, which would have vitiated the whole operation, I determined to trust to no one but myself, in a matter of this kind, and II therefore never allowed the hinder rods, after being adjusted, and read off, to be touched wiihous being myself present, at the junction of the two pairs, to be satisfied, that in removing thern, no shock or derangement had happened to the fore pair. In like manner, in laying this hinder pair in advance of the other, I was equally particular in seeing,
that nothing of this kind had taken place, and this attention, so necessary, to give any certainty to the operation, I never omitted.
20. The rods being now placed on the stands, which had been previously adjusted, being near the truth, a few minutes sufficed to set them perfectly correct. For this purpose the same telescope was used, and a small piece of wood placed on the rod; the top of which had the same height above it as the axis of the telescope. .This was made to correspond with the cross on the picket, by means of small wedges pushed underneath, or on one side of the rod. Such ant adjustmont was only required for the fore end of the advanced rod, and for the junction of the two the other parts were easily brought right, by means of the brass wire stretched on them.
21. Tue rods lying now truly on the line of the base, and in the hypothenusal plane, the languette was pushed out to meet the fore end of the fixed pair, and the reading entered in the book. The interlocking Nonius of the pair was next read and entered, and then the Comparator with the thermometer. When it became necessary to change the direction of the hypothenuse, and before the last pair of rods of the old hypothenuse had been removed, the inclination was observed with the theodolite, which had been originally set to the proper height as before noticed. The angle of elevation was observed on both faces, and the theodolite always carefully levelied, and as the instrument is capable of measuring vertical angles to a minute, there can be no great chance of error, involved in the reduction, depending on this element.
4.29. In leaving off the work in the evening of each day, it was of the frrst importance, that the point indicating the termination of the day's measurement, should be so marked, as to leave no probability of its being displaced, and also to allow of the work being resumed readily the following moraing, and without error. These two particulars were I think perfectly answered by the plummet and tripod already described. The plummet which weighed wo pounds, and was attached to a brass wire, being suspended from a theodolite stand, was set so nearly touching the brass edge of the fore rod, as to leave little more than $\frac{1}{60}$ of an inch, between: the quantity, was easily and correctly estimated by means of a scale of equal parts, held behind the rod and wire. When the wire was perfectly steady, the nick in the ivory piece of the tripod, (well fastened into the ground) was set exactly to it, the manner of doing which will be readily understood from the description already given of it. A cordon of stands united by ropes was then placed all round, the rods also beinge left standing. And a sentry was posted, and during the night regularly relieved, to guard the tripod from the epproach of any animal: The examination in the morning however never fetected any thing wrong, and therefore on this head I think we may have the most perfect confidence.
23. During the measurement there occured one accident, and two omissions, which compelled me to measure twice the distance, in two of the three cases, from the last passed picket. As I never omitted to notice and register the quantity, by which any rod overshot or fell short of these pickets, they formed a series of fixed points, to which I could return with the greatest conidence, in case of any part of the measurement, beyond
them, being vitiated or doubtful. The accident was the falling of a chair against the fixed pair, after the hinder pair, of rods hat been removed. They suffered some shock and were certainly moved a little, I returned to the picket, last passed and continued regularly the measurement from it. One of the omissions was the forgetting to read the languette of a pair of rods. Inconsequence of which II also thought it necessary to return to the last passed picket. The other omission was of less consequence. The quantity which had been omitted to be registered, was that by which the plummet had been placed in advance of the rods, in marking the point, where the day's work concluded. As this quantity seldom exceeded $\frac{1}{60}$ of an inch, the plummet being always placed as close as could well be to the rod, it was not thought that a doubt of such a quantity on a base of four miles, was a sufficient reason to undertake so troublesome a task as the remeasurement of 400 feet would have proved.
24. During the measurement, one pair of rods (being cut from the outside of the piece of wood) had warped considerably inconsequence of which I was forced to straighten them in the following manner:


Tresesmall piece $a b \cdot c d$ was cut out at the bend, and another something larger driven in, and this expedient proved a perfect cure for the warping, rendering this pair of rods equally straight with the other. Fearful, however that such an operation might have some effect on their length. woL. XIV.

I immediately afterwards compared this pair with the other, which had not been touched, by substituting them, alternately between two fixed points. The trial was satisfactory, and proved they had not altered their length by any sensible quantity.
25. This base was measured twice roughly, before commencing the correct measurement, and after finishing it. The operation, each time was performed with a Gunter's chain of sixty-six feet, compared with a wooden rod, the length of which had been laid off from the brass scale. The length by these two measurements came out 21,766 and 21,746. The true measurement as reduced to the level of the sea, and temp 69-is 21754.8 So that the mean of the above two would come very near the truth. At all events their near agreement with it shews, that no material error or omission had been committed.
26. Berore deducing the real length of the line from the details given in the accompanying paper, some thing must be said of the manner of determining the length of the rods. There were two methods, which presented themselves either to compare the four rods placed together with the chain, or to lay off twenty-five feet by means of the brass scale, on one of them, and compare the other three with it-as a check on the operation. I determined to try both methods and it is satisfactory to find that they agreed so nearly--the difference between the two values thus independently obtained, amounting only to eight feet, on a distance of four dules. As however Mr. Trouchion had omitted to mention, either in
what temperature of the brass scale, (standard) the chain had been laid off, as also with what weight it was precisely equal to 100 feet, I prefer abiding by the result of the comparisons with the brass scale, more especially as they were so numerous.
27. Previously to commencing the measurement, the length of the rod 1.2 was laid off seven times.' A beam of wood with metal points, ground down to the 600th part of an inch was used. 43 Inches were taken and laid. seven times by the method of dots, and arcs, making thus 301 inches. For greater accuracy studs of ivory lad been let into the woul, on which the arcs could be drawn. The beam was compared a second time with the scale, after the stepping was concluded, and $\frac{I}{2}$ the difference, if any, applied as a correction. The thermometer was noted before and after the mean taken-the same of the comparator: When the are, which cut tre line of division on the ivory scale-did not happer to be in the line of steps, an equation was applied by dividing the square of the deviation, by twice the length of the step, (eighty-six inches). The following table will shew the result of these seven comparisons. As determined by the division on the ivory scale, forming the determination of the 301 inches, and when they are reduced to the same state of the comparator, (the ratio of reduction being 1 to 2-125) the differences do not appear great except in one case, that of the 26 , which may I think for this reason be rejected, particularly as the great and sudden rise of temperature, ( 15$)^{\circ}$ during the operation, induce an approhension, that the brass scale might not have answered to the mean state, and that therefore, the reduction for temperature has'been overrated.

Indeed if we suppose this to have been the case, this determination will be found to agree with the others as well as can be expected.

| Date. | Thernometer. |  |  | Equation on 301 in . 40thof an inch. | Equation <br> of bean | $\left\lvert\, \begin{aligned} & \text { Deviation } \\ & \text { from line } \\ & \text { of steps. } \end{aligned}\right.$ | Observed term of 301 inch. | Reduced $\begin{array}{r} 0 \\ \text { to } 62 . \end{array}$ | Comp. mean. | $\begin{aligned} & \text { Reduced } \\ & \text { to } 1217 . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1819, Jın. 23 | 60 | 58 | 59 | +.037 |  |  | 16.01 | 16.047 | 1238 | 16.062 |
| 24 | 43 | 47 | 45 | +.211 | +.035 |  | 15.78 | 16.026 | 1366 | -130 |
| 25 | 54.5 | 62 | $58 \cdot 3$ | +.093 | +.014 | +026 | $16 \cdot 00$ | $16 \cdot 133$ | 1155 | -090 |
|  |  |  | 66 | -.049 |  |  | 16.083 | $16 \cdot 034$ | 1287 | -083 |
| $\therefore 26$ |  |  | 41.5 | +.254 | +.003 | +.040 | 15.929 | 16:226 | 1382 | -340 |
| 27 | 23.9 | 25.7 | $24 \cdot 8$ | $+\cdot 437$ | +.037 | +.028 | $15 \cdot 643$ | $16 \cdot 164$ | 1157 | -122 |
|  |  |  | $34 ; 2$ | $+346$ | + 028 | +.028 | 15.800 | $16 \cdot 146$ | 1099 | -069 |
| Mean, rejecting that of the 26 th , |  |  |  |  |  |  |  |  | 1217 | 16.092 |

The czitremo difference of thic 6 is 068 division or 017 inch, on 301 inches.
28. The operations by which the lengths of the other three rods were determined, cannot be made so clear as the preceding for want of divisions on the ivory scale, which at this stage of the husiness had only been attached to the rod 1.2. The detail will therefore be rather more summary, the rod marked 2.3 was measured twice, the steps being made on the ivory studs. The length of the rod as defined at one end by the brass edge, at the other by an arc drawn on ivory was,

| Inches. <br> 300.9601 | Comp: <br> 1173 | | |
|---|---|---|---|
| .9413 |  |$\quad$| 1168 |
| :--- |
| $300 \cdot 950 \%$ |

29. The two rods were now compared with each other. Being tied firmly with pieces of wood of the same thickness between them, they were
laid on five fimbers planed exceedingly true, and supported each on two stands. They were then adjusted by the wires of both the rods. The ends of the apparatus were towards each other, and to be sure that these corres. ponded a T. square was applied to the cheek of one rod, and the languette of the other pushed out to meet it.

$$
\text { The Nonius read off was, . . . . . . ..... } 3 \cdot 80
$$

Reversed it was,.................. 3.93
Mean,............................... $3 \cdot 855$
Equation of rod,*................
wquation of rod,*................ 004

34

By this quantity the rod 1.2, was in advance of 2.3. Now an arc of 43 inches radius, describedfrom a point in 2.3, short :0088 of the mark defining 300.9507 inches, cut 1.2 at the division 14.405 ; adding the quantity above given, 345 inches = $1 \cdot 380$ divisions, we get $15 \cdot \% 85$, which is the point where the are would have cut, had the other ends of the rods been, placed even.

Now let $e d$ be the line in which the contre of the arc $f a c$ was found: Let $e g$ be the line of divisions or 1.2, and $a$ the point which formed the limit of 300.942 inches.

$$
\begin{aligned}
& \text { a.c measured, } 42 \text { inches. } \\
& \text { And } c \text { ditto, } \quad 2.04
\end{aligned}
$$

[^34]From the data, and the radius, 43 inches, we get,

$$
\begin{aligned}
& f d=\cdot 104839 \\
& f e=\cdot 1002
\end{aligned}
$$

Consequently $e d=\quad .0463$
Now a was the mark of 300.9419 inches.

Therefore $a b$ or $c$ was, $\quad 300.3956$ or on $1.2-15.758$
Add, $\quad 1044=.44$

Consequently, ........ $301.0000=$ to 16.202 divisions.
30. A second comparison was made, in which arcs were drawn from both rods, and great care taken: the result, which to avoid prolixity it is not thought necessary to detail, was that the 301 inches, on 2.3 corresponded with the division, .......... $16 \cdot 118$

By the preceding, 202

| Mean, | 16.160 Comp. 1170 |  |
| ---: | :--- | ---: |
| B measures on 1.2, | 16.092 | $121 \%$ |
| Meas of 8, |  | 16.109 |

Trie difference of the above results when reduced to the same state of the comparator, is only 009 inches. From the mean, we also get the length
of the $2 \cdot 3$ rod, as limited by the mark, before noticed 300.366 inches. Comparator 1203.
31. The remaining two rods were now compared with these, for which purpose they were all four placed together, 1.2 and 23 , being on the outside of the other two. Two arcs were described with a radius of 43 inches from centres in the prolongation of the line of the divisions, parallel to the axis of the outer rods. Both arcs sprang from the same points on 2.3, i. e. the line marking the limit of 300.966 inches; Comparator 1203: with the scveral measures, accurately determined, were calculated the places where a line perpendicular to the axis of the 2.3 rods, and drawn through this point, would cut them. The distance of this imaginary line from certain points on the ivory scalcs of the rods, was also found. This line cut No. 1.2 at the division, $15 \cdot 80$

$$
\text { Add Ranguctie, } \quad \frac{.564}{16 \cdot 164}
$$

Now the mark of the 301 was, $16 \cdot 109$

Excess above 301 inches, $.055=014 \mathrm{ixq}$ Comparator being 1203.

Bur it has been seen, that this line limited on 2.3 the 300.966 inches. Comparator 1203. On 1.2 ............................ 301.014

## Difference,

. 048
The error, occasioned by the want of parallelism of the rods. This recurires an equation for the intermediate rods, and it is casily found, being
proportionat to the distance of their axis, or rathei of the line of divisions paralle to thein axis.

On the 3.4 rodis, this imaginary lime was found to the from the 1.2 are 366 inches $\pm 1 \cdot 460$ divisions. These are intersected at,

| 1.2 | 2.3 |
| :---: | :---: |
| 0.035 | 2114 |
| Add, $1+466$ | 0628 |

The defining line intersected at, $1-501$ 显 180

The mean of these which only differ 004 inch is $1 \cdot 493$, the division on which, the imaginary line would cut 3.4. But this requires a correction as above indicated, which is found to be nearly 037 inch. Now the length of 2.3 as defined by this line was, $\quad 300.966$

$$
\begin{aligned}
& \text { Add }_{8} \quad \frac{575}{590}+048= .031 \\
& 300.997
\end{aligned}
$$

$$
\text { Deduct languette, } \quad-141
$$

Length of rod as defined, $\quad 300.856$
By the division, $\quad 1.493$ Comparator being 1803.
32. IN the same manner was the length of 4.5 , found to be (as limited by a certain mark) 300.919 inches. The difference of the determina-
tion from the two arcs was only $\cdot 005$ inches. The rods of each pair, were now placed interlocking as they would be in the measurement. In the pair 1.2-2.3 it was found that the line on 2.3 which was most convenient for comparing with the Nonius, was $\cdot 70$ short of the mark, defining the limit of 300.966 inches. This line therefore marked the extent of 300.259 inches; again the 301 inches being marked in 1.2 by the division $16 \cdot 109$, it is evident that the division 16 marked the termination of $301-\frac{109}{3}=300.973$ inches. Adding these, $\quad 300.973$
300.259

The sum is 601.232 which is therefore the value of this pair of rods when placed interlocking, and the zero mark of 2.3 corresponding with the 16.000 division of 1.2. To find the division corresponding to 600 inches, or 50 feet, deduct $1-232$ inches $=4.928$ divisions, which gives us 11.072 , also the 11 th division answers to 599.982 inches.
33. For the other pair it was found that the zero line of 4.5 was 1.947 from the mark, forming the limit of 300.917 inches. The zero line therefore was the measure of 298.970 inches. Now on the 3.4 rod it has been seen, that the division 1.493 marked the extent of $300 \cdot 856$ inches, the first division therefore marked, $\quad 300.079$ 298.970

Sum, 599.249
7OL. XIY。
35

When therefore the zero line of 4.5 considered with the first division of $3 \cdot 4$, the length of the pair was $599 \cdot 949$, and if the division corresponding to 600 inches or fifty feet be required, we have $1 \cdot 000-051+4=796$ division. The comparator being at 1203.
34. The preceding operations were all performed previously to the commencement of the ineasurement. There was also a comparison made with the chain, at the same time, but for a clearer view of the subject it will be better here to go on, and give an account of other determinations of the length of the rods made during the measurement of the base from the brass scale. There were in all 8-in 3 of which the four rods were placed together, and the stepping made at once for all 4. In the other 9 , only the pair 3.4 and 4.5 was measured, but we oan easily from those determinations deduce the length of all four, by means of comparisons made between the two pairs. These it will be proper to notice first,
35. The pair 3.4-4.5 had a similar ivory scale, as that of 1.2-2.3 that is to say divided into quarter inches, and each of those into tenths. During the measurement however it broke, and got loose, and it became necessary to apply another. The first point is then to determine the correspondence of the two scales, which may be done from the following double readings.

| $\begin{aligned} & \text { Od sale s.e. } \\ & 0 \% 20 \end{aligned}$ | $\begin{gathered} \text { Hew Scale, } \\ \hline \end{gathered}$ |
| :---: | :---: |
| -740 | -330 |
| \%28 | . 310 |
| . 570 | -240 |



The value of the divisions on the new scale is 054.
36. Two comparisons of the pairs were made by substituting them between two fixed points. By the first the following result was obtained


Thus the pair $1.2-2.3$ was less than $3.4-4.5$ by 129 inches.
$1.8-2.8$ N.4-4.5
Neale

The Nonii marked, $\quad 0.663$ and 0.309
Now 129 inch = divisions, ${ }^{5} 516$

Consequently,............e $1 \cdot 179$ corresponds to 0.309 New Scale.
The other comparison which was made as befobe noticed, after the straightening of the rods gave as the result.

| $1.2-2.3$ | $3.4-4.5$ |
| :---: | :---: |
|  | Old Scale. Few Scale.  <br> 1.315 0.470 <br> 0.220  |

Now from the operations formerly detailed, it was found that the corres. pondence of the Nonii was follows?

| $1.2-23$ | $3.4-4.5$ |
| :--- | :--- |
| 1.079 | 796 Old Scale |

These three expressed in the 3 scales will stand as follows:

|  | 1.2-2.3 | 3.4-4.5 |
| :---: | :---: | :---: |
|  | $1 \cdot 179$ | $\begin{gathered} \text { OId Scole. New Scele } \\ 0.709 \\ 0.309 \end{gathered}$ |
|  | 1.315 | 0.4700 .220 |
|  | 1.0\%\% | 0.7960 .339 |
| Mean, | , 1-189 | 0.658.0288 |

37. Having thus established the relations which the seyeral scales bear to each other, we can from the length of one pair deduce that of the other, and consequently of all four rods, The following table shows the resulting length as deduced from the several operations performed with the
brass scale. They are all reduced to one certain division of the iyory
1.2-2.3
scales that is to $1 \cdot 300$
$3.4-4.5$
Old Scale. New Scale.
0.547 or 0.237.

## A

Length of the Rods.

| Month. | Date. |  | Nonerus. | Pair <br> 3.4-4.5 | Nonizs. | Lengeth of the set. | Comp. | Reduced to 1141 Comp. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Febra | 113 | $\square$ |  |  |  | Inches. | 8 | $\begin{gathered} \text { Inches. } \\ 1800 \cdot 026 \end{gathered}$ |
|  |  | 509.910 |  | 599.936 | -650 0. | 1199.924 | 1023 | $\begin{array}{r} 1200.026 \\ .035 \end{array}$ |
|  |  |  |  | 599.905 | -920 N. | 1190.900 | 900 | $\cdot 128$ |
|  | $2 I$2325 |  | 0.778 | 600.001 | -284N. | 1200.054 | 1064 | . 125 |
|  |  |  |  | 600.160 | -315 N. | 1200.243 | 1328 | -066 |
| March, | 27 |  | $\begin{array}{r} 0.775 \\ .200 \end{array}$ | [599.970* | -240 N. | $1200 \cdot 073$ | 1209 | -009 |
|  | 2 <br> 3 |  |  | 599.890* | -335 N. | 1199.987 | 1196 | -020 |
|  |  |  |  | 599.920 | . 285 N. | 1199.892 | 1046 | 1199.981 |
| Mean of former |  |  |  |  |  | 1200-119 | 1203 | 1200.061 |
|  |  | $1200 \cdot 019$ | 1141 |  |

The extreme difference in the aloove, as reduced to the same state of the comparator, is only $\cdot 147$ inch, on 100 feet, or 012 feet. Half this quantity or 006 feet, may be taken as the extreme probable error on the mean result, that is $\frac{1}{n 000}$ of the whole or on the base 1.2 foot.
38. In making the comparisons with the chain, the latter was placed upon boards, supported by the rod-stands; a draw post of 5 feet in length, driven firmly into the ground, held it at one end; at the other it was stretched by a weight attached to a rope, passing over a pully in the weigh post.

[^35]Besides these two, there were other two posts driven firmly into the ground, on which the brass registers were set, and by means of the slider with the fine line, the length of the chain could be accurately laid off. The stands were first put accurately in the same plane by means of the small cross of wood, and the boning telescope, and any deviation which was afterwards observed, owing either to their slides heving slipped or to any unevenness in the boards, was corrected by means of thin wedges placed underneath the chain. The links being 5 feet long, however were the less liable to accomodate themselves to the trifling inequalities of the boards.
39. Berng laid accurately it was thought advisable to observe its contraction and expansion, and whether it agreed with the indications of the thermometer, allowing for its change of length according to the known law. Thus being stretched by a weight of 19 lbs . and the registers set, the mean of 4 thermometers was $58 \cdot 6$ : on the temperature, rising to $69 \cdot 3$, as shewn by the mean of the same thermometers, it was found that it overshot the regis? teis or had expanded 073 inches.

Now the expansion of a steel chain was found by Colonel Mudge's experiment, to be very nearly the same as given in General Rov's table, in the Ist Vol. Trigonometrical Survey. This is 0075 inches for every $i$ of Fahrenheit on 100 feet,

> Now, $0075 \times 100^{\circ}=.080$ inch.
> Observed expansion -.073

Error, 007

Wuen the temperature had sunk to $58^{\circ} \cdot 0$ as shewn by the four thermo meters, it was found that it had contracted 097 .

| Now, $.0075 \times 11.3$ | $=.085$ |
| ---: | :--- |
| Observed $_{2}$ |  |$\quad \frac{.097}{.012 \text { Eror. }}$

Agrain the registers being set when the temperature was 57.9 , it was found next morning to have contracted 1625 inch. The temperature had fallen to 38.3 .

$$
\begin{aligned}
\text { Now, } 57-9-38.3=19.6 \text { and } \cdot 0075 \times 19.6= & .147 \\
\text { Observed, } & \frac{.162}{.015}
\end{aligned}
$$

40. The registers being now firmly fixed and the chain stretched with the small weight, it was proposed by means of it, to determine the distance of them. For this purpose the quantity which the chain exceeded, or fell short of them, with the temperature as given by the four thermometers; was noticed from time to time. The chain is said in Mr. Troughton's letter, to have been exactly 100 feet in the temperature of $55^{\circ}$. It was therefore reduced to this temperature. The following table, will shew the result:

| Mean of 4 Thermometerc. $80.0 \times$ | Reduction $20{ }^{\circ} 5$. -187 | Difference of ebain. <br> $-\cdot 125$ | Excess above 100 fect -062 |
| :---: | :---: | :---: | :---: |
| $66.2 \times$ | . 084 | -015 | -069 |
| $38.2=$ | -126 | - 178 | .046 |
| 38.5 | -124 | - 191 | -067 |
| $38.1=$ | -125 | - 180 | . 055 |

The brass registers are therefore distant by the mean of these trials,

$$
\text { Deduct* ersor of chain, } \quad 013
$$ 1200.069 inches.

1200.056

As compared with the chain reduced to $55^{\circ}$, and stretched by a weight of 19 lbs. avoirdupois.

When 19 lbs additional were put on, the distance of the registerz was as follows:

| Mean of 4 Thermometers. $38 \cdot 1$ | Beduction to 55. $125$ | Distance of registers exceeding chain. $\cdot 165$ | E'xcess above 100 fec $.040$ |
| :---: | :---: | :---: | :---: |
| 38.3 . | -125 | $\cdot 162$ | -037 |
| 58.0 | -029 | -000 | .022 |
|  |  | Miean, | , 033 |
|  |  | Deduct, | .013 |

Distance of the registers, 12000020
The distance therefore is $1900^{\circ} 020$ inches, as measured by the chain: reduced to the same temperature of $55^{\circ}$, and stretched by a weight of 38 lbs . the difference is 027 inch, or 002 feet, on $100=\frac{1}{50000^{\circ}}$
41. The rods were now substituted for the chain between the registers. Iine brass wires were stretched across at right angles, at the register marks

[^36]to limit the length on the rods. The several verniers and scales being read off or measured were as follows:

$\begin{array}{lllll}\text { Order in which the rods were placed, } & 4.5 & 3.4 & 2.3 & 1.2\end{array}$ The rod 1.2 , overshot the brass wire or register mark, by $\cdot 13$ t

$$
\text { The rod 4.5, by .o...................... } 812
$$

Totall overshot, ....................... +946
Deduct from languette or distance between 3.4 \& 2.3, woll


If the Nonii had manked 1.300 and 0.547 , the rods would have been,
inches.

- 119 longer.

Deduct above deficiency, ............ .065

$$
\text { Rods longer than registers, ......... } 05{ }^{4}
$$

Now the registers it has been seen, were a part $1200 \cdot 047$ as measured by the chain at $55^{\circ}$, and stretched by a weight of 191 bs . or 1200.020 as voL. XIV.
stretched by 28 lbs . Supposing what is most probable, that the length of the chain was adjusted from the standard brass scale, when at the same temperature of $55^{\circ}$, we get its length in $62^{\circ}=100$ feet - $01237 \times 7^{\circ}=$ ${ }^{\text {Feel }} 100-037=1199.913$, and the distance of the registers consequently 1199.96 inches, that is supposing the chain stretched by a weight of 10 lbs . But the rods it has been seen exceed the registers by ${ }^{\circ} 054$. Their length will therefore be 1200.014. Comparator being 1093. This operation was performed before commencing the measurement.
42. The second comparison was made on the 8ili February. The register heads had remained fixed in the same position in which the former comparison had been made, although there was no reason for suspecting any derangement, yet it was thought proper to verify them, and by a mean of several comparisons, their distance was found, the chain being reduced to $55^{\circ}$, and stretched by weights of, 14 lbs .28 lbs .

$$
1200.072 \quad 1200.036
$$

The rods were then substituted between the registers over the zero lines, of which silk threads were stretched at right angles, to the axis of the rods, and the rods were found to be less than the registers, 1 Incies.

Now the Nonii were, .... \begin{tabular}{lll}
1.292 .3 <br>
0.803

$\& \quad \& \quad$

$3.4-4.5$ <br>
0.303
\end{tabular}

Zero divisions, ........... I.300 0.237


[^37]With the Nonii therefore at, $1.300 \& 0.237$, these rods would have exceeded the registers, by 011 .
The comparator was, 1171 at commencement, 94 at conclusion, mean, 1183.

Tree distance of the registers has been found 1200.072 as measured by the chain, reduced to 55 and stretched by a weight of 14 llbs. or by one of 28 lbs . 1200.036: making the reduction to 62 on the same principle as before, these become 1199.985 \& $1199 \cdot 949$; and adding the excess of the rods, .......... .011 .011

We have, $1199.996 \quad 1199.960$
as the length of the rods, when the Nonii marked $1.300 \& 0.23 \%$, and the comparator 1183.
43. Thus the length of the rods
was by one operation,
Inches.

| By the other, . | .996 | . 960 | 1183 |
| :---: | :---: | :---: | :---: |
| Mean, | . 005 | 974 |  |

The mean of the comparisons
with the brass scale, ............... $1200 \cdot 049$
1141

Difference,
.044

This difference would produce on the whole base an effect of 8 ft . But I have the less besitation in rejecting the results of the comparison
with the chain, as 1 am ignorant in what temperature it had been adfusted, with the brass standard. And I think the difference of its length with different weights, (the maker having omitted to state with what weight it had been found to be exactly 100 feet) affords another, and a walid reason for adhering to the brass scale in preference. It is however satisfactory to observe that the difference of two determinations so entirely independant of each other, does not amount to 1 foot on a distance of 4 miles.
44. Ir now only remains to give the several reductions of the base; and from the details to conclude the real length as reduced to the level of the sea, and a temperature of $62^{\circ}$.


The sum of all the Comparators is, 460.920

$-1.4$

$$
\text { Sum of reductions by horizontaliline, } \ldots \ldots \cdot \cdot \frac{2 \cdot 0}{21,799 \cdot 3}
$$

Sume of 8th column, ..... \%

## The sum of the Nonilof $1.2-2,3$ is, $1 / 6.092$

The number of the pairs was 219.
which being multiplied by $1 \cdot 300$. the zero division gives, ........ $284 \cdot 7$

The difference, ......... $108 \%$.

$$
\frac{}{4}=\frac{\text { Inches. }}{27 \%}=\quad 2.3
$$

The Nonii of $3.4-4.5$ old scale, $\quad=54.72 \%$

$10 \cdot 415$

$$
\frac{-12}{4} \div 12=0.2
$$



| The langueltes of $1.2-8.3$ | 1709 | $7 \cdot 4$ | $x$ | 14.9 |
| :---: | :---: | :---: | :---: | :---: |
| $3.4-4.5$ | 1939 | $0 \cdot 0$ | $\times$ | 16.4 |

Reduction to level of the sea, ....................... $2 \cdot 4$

Iength of the base reduced to level of the sca and temperature $62^{\circ}, \quad 21,754.8$ FOI. AKF。
$3 \mathbb{X}$

Tre last reduction is the only one which requires any explanation. The difference of level of the stations of Zephyr Hall and Belville, was found from the peak Surkunda to be .... 1922 feet,
Zephyy Hall above Newada, ........... 492

Newade abore Belville, .................. 1430
Newada aboye south extromity base, ....... 189

1244 above Butuille.
South extremity of base half difference,
level of 2 extremity of base,........... 163
Belville above level of the sea, ............ 986 by Bar. obs.

Midalle part of base above sea, ........... 2303:

From this with the radius of the spheriod for lat. $301 \%$ (The latitude of the middle point of the base $)=20,903 \cdot 16$ feet, the above correction has been calculated by the usual formula.

$$
B-b=B \times\left(\frac{h}{r}-\frac{h 2}{r 2}+\frac{h 3}{r 3} \& c_{0}\right)
$$

where $B$ means the measured base,
C —— corrected,
h. The height above the level of the sea, r. The radius of the spheroid.

IT is evident that the first term $\frac{h}{x}$ is sufficient for psactical purposes.

$$
\text { §. } 2 .
$$

1: Having finished on the $2 d$ of March, the measurement of the base, I proceeded immediately to fix on stations for deducing from it the length of one of the principal lines, the distance of Surkanda and C"handpur peaks. That distance as finally determined, was found to be 225582 feet, and their elevation above the Doab respectively, 8258 and 7548 feet.

To connect these distant points by establishing stations between, I found $a$ very arduous task, and the difficulties I had to contend with, were so great, that the last.or 15th station was not finished till the 14 th of May.
2. Os the proper disposition of such a triangulation, as much as on the measurement of the base, depends the accuracy of the final result. It has been given: as a rute to choose the triangles, as nearly equilateral as possible, and this is no doubt proper; when the correctness of each point may be equally desirable. But, as it. is difficult to find stations so converiently situated, and as the series generally is required to continue only in one direction, it seems allowable to admit of small angles, when no principal link of the chain depends on them.
3. In enquiring what may be the probable error in the distance funally deduced from this triangulation, we have to consider first the probable error of the base, and secondly the errors of the angles arising from the want of power in the instrument, or ability in the observer. The former I have stated at probably not exceeding two feet. The angular instrument has been already described. It is no doubt a very fine one. With a teles-:
cope of great magnifying power, and verniers reading to $5^{\prime \prime}$ it does appears, but a fair suppesition, that angles could be observed to that degree of accuracy. The divisions are however on brass, which renders them difficult to read with certainty. However judging from the extreme error in the sum of the three angles, and supposing it to be the same way on every angle of the three, we shall get 7 as ine extreme possible error on each angled Now if we take an equilaieral triangle, (not too favorable a supposition), we shath find that this error on eack of the two minles used in concluding the new side, and supposing then to be in the most unfavorabie sense, would only affect the resule by $\frac{1}{25000}$ part of the whole, But even in a few. triangles, this error ought in a great measure to correct itself, so as to prewat the error increasing in the ratio of the number of the triangles.
4. Now the closiag station is brought in at the 14 th triangle, and if all those that only answer as checks be rejected, it will be but the 10th in order. This would appear to be a sufficient warrant against any great ace camulation of error, but thave as a check chosen to follow out the result by other seriep, The 35 th figure furnishes the 3 d value of the distance of the two principal stations Surkawda and C"Randpur ; the mean of the three values, is taken for the foundation of the large triangulation. Those after the 35 th , are meant from some of the preceding results, to deduce the distances of the intermediate stations of the great triangulation, and in one case, by means of a concluded angle. But this result is checked again by ane of the great triangles,
5. None of the angles on the sine of which any connecting side depends is less than $40^{\circ}$, except in one triangle, (the 15 th) and in this the angle is $\mathbf{1 6}$, but from this a very short side of $\mathbf{1 7 , 0 0 0}$ feet only is concluded, as part of a longer side of 58,000 , from which the series was to continue. The reason of requiring this small side, (the distance of the 12 th and 13 th stations), was an inability to distinguish the 13 th station from the l0th. I was therefore obliged to make a quadrilateral of the 10th, Ith, 12th and 13th. The distance of the 11 th and 13 th is checked by 2 other quadrilaterals, in which other stations were substituted for the 12 th . I have numbered these in the order of the triangles. This method of deducing a side, from the known angles and all the sides, but one or two, of a 4,5 , or 6 , sided figure is very convenient, and I think equally satisfactory, as the more direct one of a triangle. I have therefore not hesitated to employ it, as in the figures marked $23,26,28,31,33$.
6. What follows consists of,-first, a detail of the angles observed at each station with an account of the stations, and the reductions to the centre where required. To this, I have subjoined a table of the angles reduced and arranged in triangles or quadrilaterals, with all the logarithms; necessary for their verification. It would appear to be affecting an accuracy, of which operations (conducted with such limited means as ours), are not susceptible, to have used more than 6 figures of logarithms. In fact on an angle of $60^{\circ}$, an crror of $7^{\prime \prime}$ would produce an alteration of 8 , in the 6th figures of the sine. And on a line of 21,000 feet, the crror of two feet, which I suppose possible, might alter the logarithm 4 in the 5th place. So that 6 figures appear to be more than sufficient. The voz。XIV.
anown sides of the triangles are always on the third or last line. The heading of the columns is sufficiently intelligible. Some triangles are resolved by cosines, for instance, when 2 sides and 3 angles are given, those angles being very acute, that is less than $30^{\circ}$. In resolving 4 sided figures, the general method that has been followed is to draw parallels to the 2 unknown sides-by which means 2 triangles are obtained, in which all 3 angles are given, and one side. In resolving a 5 or 6 sided figure $I$ have preferred, letting fall perpendiculars, from each of the angular points on the unknown side, and calculating the several sides or pieces, intercepted by these perpendiculars. But from the paper itself it will be sufficiently clear, how each result is obtained, and from the full detail that is given, it will be an easy task to detect any mistakes that may have been made.

## Detail of the Angles of the Triangulation founded on the measured Base.

In the following there has been no selection nor rejection, but where it was quite evident, that the wrong object had been bisected. There are three columns, one for the various readings on the same point of the limb, the other for the various means of these, and a third for the true or correct angle.

1st Station, Southern Extremity of the Base.

|  |  | Readings on same point of Limb. | Readings on dif ferent point. | Mean or correct value of the Ansle. |
| :---: | :---: | :---: | :---: | :---: |
|  | Flag staft, Newsedh, . . . . . . . . . . . . . . . . . . | $98: 20^{\circ} 48 \cdot 7$ 38.8 42.5 29.5 30 20 37.5 29.5 $11 \cdot 2$ 45.6 96.8 | $98.9043 .3$ $26 \cdot 5$ $11 \cdot 2$ $45.6$ $26.8$ | $98^{\circ} 20^{\circ} 30^{\prime \prime} 7$ |
| 2 | lag staff and 彐ephyr Halc, | $\begin{array}{ll} 2240 & 55 \cdot 5 \\ 45 \\ & 52.5 \end{array}$ | $224041 \cdot 0$ | 224051.0 |
|  | Zephyr Hall and Newada,............... | 75.4518 .8  <br>  37.5 <br>  $21 \cdot 2$ <br>  47 | $75.4531 \cdot 1$ | 754531.8 |

ed Station, Newada.


2d Station Newada,-Continued.

|  | Reading gs on same poine of Limb. | Readings on different point. | $\begin{gathered} \text { Meane or correct } \\ \text { value of the } \\ \text { Angle. } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| Northeran extremity of the base and Nelapani, 4. Mitha Bérí and Nalapazé. $\qquad$ |  | $\begin{array}{rlr} 29 & 18 & 07 \cdot 5 \\ & 02.5 \\ 74 & 03 & 46 \cdot 2 \\ & 49 \cdot 4 \end{array}$ | $22^{\circ} 2805$ $7403478$ |

3d Station, Sophyr Hall.


4th Station, Nalapani.

striStation, Nalapani, - Continued.


5th Station, Mitha Bérü.


6th Station, the Tank.

| 1 Dúdhiľ station and Nelupant,............. | $\begin{array}{rrrr}56 & 03 & 08.8 \\ 02 & 56.2\end{array}$ | $56.02 \quad 59.4$ | 560301.0 |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{lllll}56 & 03 & 02.5\end{array}$ |  |
| 2 Bhadraj and Nalupanz, ................. | $\begin{array}{r} 26 \quad 35 \quad 05 \cdot 0 \\ 03 \cdot 7 \end{array}$ |  | $724355 \%$ |
| 3 Timli and Bhadraj Dún, . . . . . . . . . . . . |  | $\begin{array}{lr} \\ 85 & 18 \\ & 4 \\ & 52 \cdot 4 \\ & 43.8\end{array}$ | $851848 \cdot 1$ |
| 4. Bhadraj and Dúrthili station, (1 from 2)'... |  | $263504 \cdot 4$ | 164054.7 |
| ${ }^{5}$ Nalupani and Masírana station, . . . . . . . . . . |  |  | 263504.4 |
| 6. Bhadraj and Masírana station, ${ }^{\text {a }}$ |  |  | 46 08 <br> 159 49 <br> 158  |
| 7 Nalapani and Timli, (2 from 3) |  |  | $1580143 \cdot 8$ |

VOL. XIV.

Ytin Station, Northern Extremity of the Base:


8th Station, Timli.


8th Station Timli,-Continued.

|  |  | Readings on same point of Limb. | Readings on different point. | Mean or correct oalue of the Angle. |
| :---: | :---: | :---: | :---: | :---: |
| 9 | Surktunda and Chứr,.................... | $10558^{\circ} 27.5$ | $105^{\circ} 988^{\prime} 27^{\prime \prime} 5$ 37 | $105^{\circ} 58^{\prime \prime} 32 \cdot 3$ |
| 10 | Chúr and Buirát flag staff, <br> Bhadraj-Juunsur and B. F. S. | 630500 00 |  | $630500$ $45700 \cdot 0$ |

9th or Musírana Station.


10th Station, Surkanda.

| 1 Nalapani and Musirana station, ........... | $\begin{array}{cc} 40 & 03 \\ & 13.8 \\ & 17.5 \\ 40 \quad 03 & 33 \cdot 5 \\ & 41.8 \\ & 31 \\ 40 & 03 \\ & 25 \cdot 5 \\ & 29 \\ \hline \end{array}$ | 400315.6 <br> $400335 \cdot 4$ <br> $4003 \quad 27 \cdot 3$ | 400326.8 |
| :---: | :---: | :---: | :---: |

11th Station, Bhadraj-Jounpir.


12th Dúdhili Station.


12th Diudhile Station,- Continued.

|  |  | Readings on same puint of Limb. | Reading's on different point. | $\begin{aligned} & \text { Mean or correct } \\ & \text { value of the } \\ & \text { Angle. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Nalapani and tank, .. ..... .... ... ..... | $\begin{array}{llll} \\ 57 & 08 & 08.8 \\ & & 12.5\end{array}$ | 0 1 11 <br> 57 08 10.6 <br>   25.0 | $577^{\circ} 0817 \cdot 8$ |
|  | Nalapaní and Masírana station, ........... | $\begin{array}{rrrr}50 & 29 & 01 \cdot 2 \\ \\ 28 & 59.7\end{array}$ |  | $5028 \quad 57 \cdot 4$ |
| 6 | Masírana station and Biadraj Dín, ...... | $\begin{array}{cc}1710690 \\ & 12.6\end{array}$ |  | 1710612.0 |
|  | Tank and Bhadraj Dín, .................. | $\begin{array}{rrr}811638 \cdot 7 \\ & 41.2\end{array}$ | 8 $811640 \cdot 0$ $81630 \cdot 0$ | 811635 |

13th Station, Bhadraj Dírr.


14th Station, Bhadraj-Jounsar:


15th Statiou, Bairát Fort.

|  |  | Readings on same point of Limb. | Readings on different point. | Mem or correct oaiue of the Angle. |
| :---: | :---: | :---: | :---: | :---: |
|  | Bhadraj-Jounpúr and Bhadraj new station, . |  | - " 1 | $57^{\circ} 10^{\prime} 10^{\prime \prime} \cdot 7$ |
|  | Bhadraj-Jounpír and Bhadraj old station, .. | $\begin{array}{llll}59 & 11 & 33.8\end{array}$ |  | $\begin{array}{lllll}59 & 11 & 38.8\end{array}$ |
| 3 | Bhadraj-Jounpúr and Timli, .............. | 1080601.3 |  | $1080608 \cdot 1$ |
|  | Bhadraj-Jounpúr and Surkando, .... ...... | $6{ }_{6}$ <br> 15 <br> $17 \cdot 5$ <br> 17.5 |  | 6039245 |
|  | 5 Bhadraj new station and Bhadraj old station, | $201 \begin{array}{r}27 \cdot 5 \\ 23.8\end{array}$ |  | 201238 |
|  | 3) Bhadraj new station and Bhadraj-Jounsar, .. | $\begin{array}{rrr}75 & 0216.3 \\ \\ 08 & 08.8\end{array}$ |  | 750212.6 |
| 7 | Bhadraj new station and Timli, . .... . ..... | $\begin{array}{lll}50 & 55 & 51 \cdot 3 \\ & 56 \cdot 3\end{array}$ |  | $5055 \quad 59.8$ |
|  | Bhadrajold station and Surkanda, ......... | $530816 \cdot 3$ |  | 530816.3 |
| 9 | Bhadraj-Jounsar and Timli, ............... | $\begin{array}{lll} 2406 & 25 \\ & 12.5 \end{array}$ |  | 240618.7 |
| 10 | C'Randpúr and Timli, | 752296.9 |  | 7592829 |
| 11 | C'handpúr and Surkonda, .... .............. | $\begin{array}{lll}17 \% & 2518.5 \\ \\ & 106\end{array}$ |  | $1772508 \cdot 3$ |

16th Station, Bairát Math.


17th Station, C'handpúr.

| 1 Buarat right corner and Timli, ..............\| | $554242 \cdot 5$ |  | $554242 \cdot 5$ |
| :---: | :---: | :---: | :---: |
| 2 Buirát Math and Timli,. . . . . . . . . . . . . . . . |  |  |  |
| 3 Bhadraj Dún new station and Timli,........ | 411330 |  | $41 \quad 13 \quad 30$ |

VOL. XIF.

Accomat of the Stations, at which the foregoing Angles were observed, and details secessary for their reduction to the centre of the Station.

The greatest part of these stations are either on rising grounds or on the summits of peaks. Indeed there are but four out of 17, which are on the low grounds. The signals used were in the Dún, and where other objects did not offer, pyramidal frames of wood covered with cloth. These when projected on a dark grownd, are very distinguishable, and can on account of the sharpness of their summits be intersected, with the greatest nicety. Their axis were set truly perpendicular by means of a plummet and wedges driven underneath them. This plummet was also made to coincide with the centre of the station, and the signal then fixed by driving in strong pickets to which it was lashed. For two stations, the northern and southern extremities of the base, a flag staff was used and after concluding the angles in the Dún, this flag staff was erected at the connecting station in the Din, in order that it might be more distinguishable from the mountains. The other objects observed were various as will be seen in the following account of the stations. I shall give also the reduction of the obseryed angles, to the true, as referred to the centres of the several stations.

## 1st Station, Southern Ixtremity of Base.

A Largr picket was driven in to mark this station. The signal was placed inmediately over it as also the circle in oberving. There are therefore no reduclions to be made.

## 2d Station, Newada.

The same as the first station, it is about 100 feet west or north-west of the Math or Hindi temple, near the village of that name, four miles south-east of Défrra.

## 3d Station, Zephyr Hall.

The same as the two preceding. It is near the north-west comer of Captain Young's Bungalow, on the Nalapani hill, distinguished by the above name.

## 4ith Station, Nalapani.

Tras is the site of the fort of that name, before which General Grivespia fell. The station is marked by a large picket (Plate 3, fig. 1). In observing, the circle was placed accurately over it. The signal was also adjusted to it, but it happened that when observing at the Didhili station, the pyramidal frame having been blown down, I was compelled to take the angle on a tree close to which the signal had been placed. It is a well defined object, and its stem is short and straight. The distance of the station from it was determined to great nicety, by observ. ing the angle between them from Zephyr Hall, distant only one mile.

This angle was, $01625^{\prime \prime}$
The angle at the north P. signal was, 9645

$$
\begin{aligned}
& 3 \mathrm{Bd} \text { Angle, } \quad 82^{\circ} 58^{\prime} 35^{\prime \prime} \text { Sine Ar. Co. } 000328^{\circ \prime} \\
& \text { Log.distance of signals, }=5485 \quad 373916 \\
& \text { Sine, } 16^{\prime} 25^{\prime \prime} \quad 7679 \text { OI }
\end{aligned}
$$

Distance of centre of station, from centre of uree, $264=142145$

Now at the centre of station, the angle between the tree, and the DudFint signal was $137^{\circ} 50^{\circ}$ the tree being to right of the latter. The distance of the signals is 53,064 feet. The reduction will then be;

Log. 53,064 Ar. Co. 5.275\%
Sine, $13 \% 50 \quad 9.8269$

Correction in seconds, $68.9 \quad 1 \cdot 8380$ additive in Asimuth.

## 5th Station, Mitha Bért.

Marked by a picket as usual. No reductions. It is about three furlongs $S$. $\mathbb{E}$. of the village of that narne, and not far off the road to Déhra from Sahinspuir.

## 6th Station, the Tricnle.

This station is on the road from Sahínspur to Déhra. There is a tank surrounded by high banks, on the southern of which are several small white buildings erected, to commemorate Satís that have taken place. It is the eastern of these that marks the station. The place of observation is marked by a picket of the usual size. From Nalapani the proper object was not visible, being hid by a tree, I was therefore obliged to intersect another of these buildings, the distance of which I carefully determined. A plan of the station, shewing the relative position of the three points is given plate 3, fig. 2.

The distance of the western Satí, from the picket as measured by a brass chain was found to be 68.1 feet, and of the eastern 7.3 feet.

The angle which the former made with Nalapani was found to be $155^{\circ}$ 15 , the latter being to the right. The eastern was to the right of Nalapani, again $56^{\circ} 1 \%^{\prime}$. With these data, and the following distances we obtain the reductions.

Reductions to Centre, Distance 6.1 Teet, Longiuude $90 \% 853$.

| Stastions. | $\left\{\begin{array}{c}\text { Distance } \\ \text { from centre } \\ \text { of station. }\end{array}\right.$ | Logarithm. | $\left\|\begin{array}{l} \text { Angle be-1 } \\ \text { tween stati- } \\ \text { ons \& centre. } \end{array}\right\|$ | Sines. | Reduction <br> in <br> Azimuth. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Natupani, | $\begin{gathered} \text { Feet. } \\ \mathbf{5 8 . 7 2 0} \end{gathered}$ | $4 \cdot 7301$ | $56^{\circ} 12^{\circ} \mathrm{L}$ | $9 \cdot 9196$ | $\begin{gathered} \text { Az. } 11 \\ 10.4- \end{gathered}$ |
| Dúdhilí station, | 58.807 | -7694 | 11215 L. | 9.9664 | $19 \cdot 7$ - |
| Bhadraj Dún, | 58.689 | -7685 | 12856 L | 9.8909 | $16 \cdot 7$ - |
| Timli, ...... | 71.086 | -8518 | 21414 L | 9.7502 | $9.9+$ |
| Mitsírana, ©.... | 82.316 | .9155 | 8247 L. | 9.9965 | 15.2- |

The reduction of the other Sati to the picket may he found thus:
Hog. Ar. Co. 53.720 5.2699

Sine, $\quad 155 \cdot 15 \quad 9.6219$
Kog. 169. 22279

|  | $5 \cdot 3144$ |
| :--- | :--- |
| $271 \cdot \%$ | $2 \cdot 4341$ |

431.7 add reduction to other Sati,
19.4 sum is $4.5 \ddot{1} \%$. Which is the angle subtended by the two Satis; at Nalapaná.

## 7th Station, Northern Extremity of Base.

Marked with a large picket as usual. It is on the enge of the Riso panna Nala, about 400 yards north of the village of Dalamwala. No reductions.

## 8th Stations, Timli.

TMrs station is about one mile or a little more $\mathbb{S}$. W. of the village of that name, on a rising ground, a large picket as usual marks the spot. No reductions.

## 9th or Masirana Station.

Thers station is on a peak of the range which bounds the Din to the north, shutting in the Aglar, one of the feeders of the Jumna. The point obscrved was a small pyramid of trees which had been formerly erected. From Nalanani, however this point was not observed, but a pillar that had been built on the occasion of a former visit. The stand of the circle was placed exactly under the summit of the pyramid. FThe distance of the pillar observed at Nalapani was 2.3 feet, and the angle which it formed with Nalapané was 159 , the latter being to the left. This gives with the distance, 41.867 feet, the reduction is $=4 \cdot 1$-additive in Azimuth. (Plate 3. fig. 3).

## 10. Station, Surkanda.

This is one of the stations of the great triangulation, and it was for the determination of the distance of this and the C'handpur station, that this triangulation was instituted. The point observed is the centre of a small Math or Mindi temple. The place of observation is a stone pillar, which is 14 feet from the centre of the building. The centre forms an angle with Nalapani of $90^{\circ}$, being to the left, and consequently with the Nocirctua station an angle of M20. With these and the distances, the


reductions to the centre are found to be $4 \hat{4} \cdot 7$, for Nalopani (in Aximuth +), and for the Masirana station $45^{\circ} 9$ (in Asimuth +). (Plate 3. fig. 4)。

## IIth Station, Bhadraj-Jounturiz.

Tus station is on a mountain of Jounpir, situated between the Agiar and the Jumra, a wooden temple with conical roof on the summit was the point observed, but the place of observation was on a stone pillar 9.5 feet from its centre. The angles which it formed with the different points intersected and their distances, as well as the reductions are given in the following table.

Reductions to Centre, Distance $9 \cdot 5$ Feet.


## $12 t ⿸$ or Dúdhili Station.

Tris station is on a peak of the range to which Bhadrax. Mastranci and Surkanda stations belong. The point observed was a pillar which had been previously erected, and it was on this that the circle was placed. in observing, There are therefore no reductions.

## 13 th Station, Bhadraj.

This station is on the castern summit of a well known peak. The circle was placed on the pillar which was the point observed from the other stations, consequently there are no reductions. To distinguish it from the
station of the great triangulation which is on the western summit, I have called it the new station, and the other the old, their distance which will be aseful was well determined from Buirat, and from Rhadraj- Jomasar.

## 14 t Stution, Bhadraj-Jouzstr.

Thirs station is on the ascent to Buard fort from $\mathbb{K}$ alsi。 The place of observation is a pillar built in the centre of a platform of loose stones. The points intersected from other stations were ihe extrena corners of this platiorm. The plan (fig. 5) of the station will shew how the reductions are obtained.

The comer observed at Timli is the $\mathbb{S}$. $\mathbb{E}$. one; it is $9 \cdot 6$ feet from the pillar, from which place it forms an angle of $103^{\circ} 38^{\circ}$. These data with the distance 90,456 , gives the reduction at Timeli $21 \cdot 4+$ in Azimuth. From Dhadraj, two different conners were observed at different times. The first time the S . I . or middle one as it thence appeared. The angle which this forms with Bradraj was found to be 2900 , which with the distance of Pradraj $38,60 \%$, and that of the corner from the pillar $9 \cdot 6$ feet, gives the reduction at Bhadraj $25^{\circ} 0$ - in Azimuth. The second time the extreme corners were observed, which gives the place of the centre or middle point. Now from the diagram it may be seen that this point as viewed from Bhadraj, falls to right of the pillar of feet, which at that distance subtends. S" 1 the reduction, in Avimuth it is - .

## $15 t h$ Station, Bainait Fort.

Thrs is also one of the points of the great triangulation. The station is however different in the two triangulations, in the small one it is the south cor:
ner of the outer fort, in the large one, it is a pillar within the inner fort, the distance betwren these poinis has been determined accurately, being necessary for the solution of some of the great triangles. "he figure (fig. 6) will shew the relative positions, and distances of the several points.

The point observed wras a flag staff at the corner of the bastion, but the circle could not be set up exactly in this point. It was placed on a pillar So 1 feet from it, which formed an angle of $23^{\circ} 2 \dot{5}$ with Bhadraj, the latter being to the right; with these data, and the distances, the following reductions may be calculated.

Reductions to Centre, Distance 7.6 Reet.

| Stations. | Distance from centre of stations. | Ar. Co. of Logariihm. | Angle be- twecr2 stait- ons \&s cenvre. | Sines. | Reduction in Azimuth. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bhadraj-Jounpúr, . | Feet. 38.946 | $5 \cdot 4038$ | \% 345 L . | $2 \cdot 7447$ | $2 \% \cdot 4$ - |
| Bharbraj Dún new station, . . . . . . . . | 38.829 | -4108 | 23 25.R. | -598\% | $16.0+$ |
| Bhataraj Dín old station, . . . . . . . | 38.380 | -4159 | 2596 R | -6329 | $17.5+$ |
| Timli,.... | $107 \cdot 576$ | 4.9683 | 7420 R | - 8835 | $14.0+$ |
| Surkcanda, | $127 \cdot 155$ | . 8246 | 2743 L . | -6875 | 05.7- |
| Bhadraj-Jounsas | 19.131 | $5 \cdot 7183$ | 9828 R . | -9352 | $80.9+$ |
| $C^{\text {chandmur, }}$ | 98.212 | $5 \cdot 0078$ | 14942 R. | - 20.9 | 08.1 + |

## 16 th Station, Buirait Math or Silgúr Stockade.

The point observed was the centre of a small Frath or temple about one mile from the fort, the following reductions are calculated.

Reductions to Centre.

| Stations. | $\begin{array}{\|l} \text { Distance } \\ \text { from centre } \\ \text { of stations. } \end{array}$ | Ar. Co. of Logarilhm. | $\left\|\begin{array}{c}\text { Angle be- } \\ \text { tween stati- } \\ \text { ons \& centre. }\end{array}\right\|$ | Sines. | Reduction in <br> Azimuth. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Bhadraj-Jounpurr, | $\begin{aligned} & \text { Feet. } \\ & 47 \cdot 141 \end{aligned}$ | 5.3266 | $177^{\circ} 388^{\circ} \mathrm{R}$. | 8.6159 | $1^{1 \prime} \cdot 4+$ |
| Bhadraj Dín,.. | 47.559 | -3228 | 13605 I | 9.8411 | 23.8 - |
| C'huntriter, . . . . | $90 \cdot 111$ | -0452 | 9 | $9 \cdot 0559$ | 02.2 |

YOL, XIY.

## I7th Stution, C"handpur Peak.

Trus like Bhadraj, Surkanda, Rairat, is one of the stations of the great triangulation. It is a lofty mountain being elevated above Schôranpúr 5548 feet. The object observed was the centre of a stone temple. The distance and the relative situation of this building, and the pillar on which the circle was placed, are shewn in the figure. With the data these contained, and the distances, the following reductions are calculated.

Reductions to Centre, Distance 44 Feet.

| Siations. | Distance from centre of stations. | Ar. Co. of Logarithm. | $\left\|\begin{array}{c}\text { Angle be- } \\ \text { tweer sheti- } \\ \text { ons } \& \text { centre }\end{array}\right\|$ | Sines. | Reduction in Asimuth. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Timli, | $\begin{aligned} & \text { Feet. } \\ & 126013 \end{aligned}$ | 48996 | 1590001. | 9.5543 | 25.8- |
| Bhadraj Dún, | $125 \cdot 164$ | -9025 | 15946 R . | . 5388 | 25.7 + |
| Bairát, | 98.212 | $5 \cdot 0078$ | 14517 R. | $\cdot 7555$ | 52.6 + |
| Silgúr Stockade, | $90 \cdot 111$ | . 0459 | 13721 R . | -8309 | $68.2+$ |
| Surtiands,..... | 295.606 | 4.6467 | 14645 Fe . | .7390 | $28.0+$ |

From every station but Dairaft this point was observed, but from that place it could not be clearly seen, being in a great measure hid by another building, which is shewn in the plan, (fig. 7). The distance between their centre measured on a perpendicular to the direction of the Bairát station is 5.3 feet. This subtends at the distance of 98,212 feet an angle 10.8 , and this is the value of the reduction in Azimuth. It is + the true centre being to the right of the other as seen from Bairót.
Table of the Angles and Sides of the small Triangulation founded on the measured Base of
21,754.8 7 Fet.




The distance of the 4 thind $2 d$ stations appears by this triangie to be 39964.8 feet. By the preceding it bas-been found to be 328638 fect. The meall of thie two results is 329643 with which the following triangle is resolved.



This quadrilateral is resolved by drawing parallels to the opposito sides through the 9 th station, by which the 2 following triangles are obtained.

This quadrilateral is resolvea by drawing paralleia to the opposite sides through the 85 th station, by which the 2 fullowing triangles are obtained.

Three
It is resolved as is the case of the 18 th.



The third angle in this triangle was not observed, but the distance concluded is checked by another triangle in the large series.

Table of the Angles and Sides of the Great Triangulation.

| No. | Rames of Stations. | $\left\|\begin{array}{c}\text { Observed } \\ \text { Angles } \\ \text { Re- } \\ \text { dicced to } \\ \text { Centic. }\end{array}\right\|$ | Angles for Calculation. | Logarithmic Sines. | Logarithm: of sides opa posite. | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\left\|\begin{array}{r}\text { C'handpur Math, ........... } \\ \text { Surkunda pyramid, .......... } \\ \text { Belville pillar, ............ } \\ \\ \text { Shd. be }\end{array}\right\|$ | 08 1 17 <br> 63 41 38 <br> 47 21 42 <br> 179 59 27 <br> 180 00 14 <br> Error, 47  | 0 1 11 <br> 68 56 23 <br> 63 41 46 <br> 47 21 50 | $\begin{array}{lll} 9 & 968 & 976 \\ 9 & 952 & 529 \\ 0 & 13 & 3 \\ \hline \end{array}$ | $\begin{array}{lll} 5 & 456 & 597 \\ 5 & 439 & 150 \\ 5 & 353 & 304 \end{array}$ | $\begin{array}{ll} 286 & 152 \\ 274 & 885 \\ 225 & 582 \end{array}$ | Mean of 3 results : small triangulation. |
| 2 | Bairát inner pillar, Surkanda, . . . . . . . . . . . . . . . Belville, $\qquad$ Shd. be | 88 43 39 <br> 64 50 01 <br> 26 26 49$\|$180 00 29 <br> 180 00 08 <br> Error, 21  | $\begin{array}{lll} 88 & 43 & 29 \\ 64 & 49 & 51 \\ 26 & 26 & 39 \end{array}$ | $\begin{array}{lll} 9 & 999 & 892 \\ 9 & 956 & 675 \\ 0 & 951 & 32 \end{array}$ | $\begin{array}{llll} 5 & 456 & 698 \\ 5 & 413 & 481 \\ 5 & 105 & 483 \end{array}$ | $\begin{aligned} & 286 \cdot 219 \\ & 259108 \\ & 127492 \end{aligned}$ | The distance of Bairát flag staff from Surkanda is by the small triangulation 127,446. By the plan of the station, given with the appendiz, it may be seen that the pillar is 46 feet more. |
| 3 | Chúr pyramid, Bairát, Belville, | $\left\lvert\, \begin{array}{rrr} 52 & 35 & 46 \\ 95 & 56 & 30 \\ 31 & 28 & 31 \\ \hline 180 & 00 & 47 \end{array}\right.$ | $\begin{array}{lll} 52 & 35 & 30 \\ 95 & 56 & 14 \\ 31 & 28 & 15 \end{array}$ | $\begin{array}{lll} 0 & 100 & 000 \\ 9 & 997 & 664 \\ 9 & 747 & 724 \end{array}$ | $\begin{array}{llll} 5 & 413 & 481 \\ 5 & 511 & 145 \\ 5 & 231 & 205 \end{array}$ | $\begin{aligned} & 259108 \\ & 324448 \\ & 170297 \end{aligned}$ | The small triangulation gives 170,339.4 for the flag staff. This is for the pilv lar 170,286. |
|  |  | $\|$42 54 45 <br> 185 29 16 <br> 63 41 88 <br> 57 55 21 <br> 360 01 00 <br> 360 00 18 | $\left\lvert\, \begin{array}{rrrr}49 & 54 & 35 \\ 195 & 29 & 06 \\ 63 & 41 & 28 \\ 57 & 55 & 11\end{array}\right.$ | (.). |  | $\begin{array}{r} 73960 \\ 225582 \\ 286186 \\ 324398 \end{array}$ | The distances are those of the station opposite which they are written from, the following one, and in the case of the last of it, from the first. |


| No. | Names of Stations. | Observed Angles Re- duced to Centre. | Angles for Calculation. | Logurithmic Sines. | Lagarithms of sides opposite. | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | Bhadraj-Dín old station, Sarkandu, . . . .... .... . . Belville, .. . . ... ....... . | $\left[\begin{array}{rrr} 110 & 44 & 31 \\ 48 & 25 & 51 \\ 20 & 50 & 08 \\ \hline 80 & 00 & 30 \end{array}\right.$ | $\left\lvert\, \begin{array}{rrrr}110 & 44 & 21 \\ 48 & 25 & 41 \\ 20 & 49 & 58\end{array}\right.$ |  | $\begin{array}{lll} 5 & 456 & 703 \\ 5 & 359 & 769 \\ 5 & 036 & 809 \end{array}$ | $\begin{array}{r} 286929 \\ 298965 \\ 308 \quad 845 \end{array}$ | By the small triaugulation. |
| 6 | $\left\lvert\, \begin{aligned} & \text { Churr, } \\ & \text { Bhadraj, .............. } \\ & \text { Belville, }\end{aligned}\right.$ | $\left\{\begin{array}{ccc} 44 & 14 & 17 \\ 98 & 41 & 09 \\ 37 & 05 & 13 \end{array}\right.$ | $\begin{array}{lll} 44 & 14 & 04 \\ 98 & 40 & 56 \\ 37 & 05 & 00 \end{array}$ | $\left\lvert\, \begin{array}{ccc}0 & 156 & 396 \\ 9 & 994 & 994 \\ 9 & 780 & 300\end{array}\right.$ | (10cc\| $\begin{array}{ccc}5 & 359 & 769 \\ 5 & 511 & 159 \\ 5 & 296 & 465\end{array}$ | $\begin{aligned} & 228965^{\circ} \\ & 324458 \\ & 197909 \end{aligned}$ | The 3 values of this distance $\left.\begin{array}{\|rr}\text { are } & 324458 \\ & 448 \\ & 398\end{array}\right\} \begin{aligned} & \text { Mean, } \\ & 324435\end{aligned}$ |
| 7 | Chúr, ... <br> Belville, . <br> \|Surkenda, | 575321 | 54 35 09 <br> 57 55 15 <br> 67 29 38 | $\begin{array}{llll}9 & 928 & 045 \\ 0 & 034 & 404\end{array}$ | $\begin{array}{llll}5 & 473 & 577 \\ 5 & 51.1 & 128\end{array}$ | $\begin{array}{ll} 986 & 198 \\ 297 & 562 \\ 324 & 435 \end{array}$ | With the observed angle and the given sides, the other angles are calculated. |
|  | Chír C'handuár, Súřizuda. | 1643044 | 1648044 |  |  | 295 297 298 78 7 7 |  |
|  | Jyfec, .. <br> Chúŕ, .. <br> Bhadraj, | 73 55 43 <br> 75 41 41 <br> 30 23 27 <br> 179 59 51 | $\begin{array}{lll} 73 & 55 & 46 \\ 75 & 41 & 44 \\ 30 & 22 & 30 \end{array}$ | $\left\|\begin{array}{ccc} 0 & 017 & 312 \\ 9 & 986 & 322 \\ 9 & 703 & 856 \end{array}\right\|$ | 5 296 465 <br> 5 300 099 <br> 5 017 639 | $\begin{aligned} & 197909 \\ & 199572 \\ & 104144 \end{aligned}$ | \%- 1* |
|  | Belville,..............$~$ | 5001 6817 | $\begin{array}{llll}50 & 04 & 49 \\ 68 & 17 & 14 \\ 61 & 37 & 58\end{array}$ | 9 884 764 <br> 0 968 039 <br> 0 055 557 | $\begin{array}{lll} 5 & 300 & 090 \\ 5 & 383 & 365 \\ 5 & 359 & 769 \end{array}$ | $\begin{aligned} & 199568 \\ & 241749 \\ & 228965 \end{aligned}$ |  |
| 11 | Pelville, Surkanda, IJtec, | $\begin{array}{llll}70 & 54 & 58 \\ 47 & 48 & 33\end{array}$ | $\begin{array}{lll} 70 & 54 & 48 \\ 47 & 48 & 28 \\ 60 & 16 & 44 \end{array}$ | $\begin{array}{lll} 2 & 975 & 443 \\ 9 & 869 & 757 \\ 0 & 057 & 016 \\ \hline \end{array}$ | $\begin{array}{lll\|} 5 & 489 & 126 \\ 5 & 383 & 440 \\ 5 & 456 & 667 \\ \hline \end{array}$ | $\begin{aligned} & 308408 \\ & 241791 \\ & 286198 \\ & \hline \end{aligned}$ |  |


| No. | ,Numes of Staticns. | Observed Angles Re- duced to Centre. | Ansles for Calculation. | $\left\lvert\, \begin{gathered} \text { Logaritimic } \\ \text { Sines. } \end{gathered}\right.$ | $\begin{gathered} \text { Logarithms } \\ \text { of Sides op- } \\ \text { posite. } \end{gathered}$ | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 |  | 52 <br> 52 <br> 63 <br> 52 | 64 01 11 <br> 52 06 01 <br> 63 52 48 | $\begin{array}{lll\|} \hline 0 & 046 & 267 \\ 9 & 897 & 125 \\ 0 & 953 & 215 \end{array}$ | $\begin{array}{llll} 5 & 353 & 304 \\ 5 & 296 & 696 \\ 5 & 359 & 786 \\ \hline \end{array}$ | $\begin{aligned} & 295 \quad 582 \\ & 198 \quad 014 \\ & 225 \quad 313 \\ & \hline \end{aligned}$ |  |
| 13 | Fedar Kanta, ......... Chúr', <br> Buirát, | $\begin{array}{r}483950 \\ 803644 \\ \hline\end{array}$ | $\begin{array}{lll} 48 & 39 & 48 \\ 50 & 43 & 31 \\ 80 & 36 & 42 \\ \hline \end{array}$ | $\begin{array}{lll} 0 & 124 & 452 \\ 9 & 888 & 808 \\ 9 & 994 & 143 \\ \hline \end{array}$ | 5 231 192 <br> 5 244 452 <br> 5 319 787 | $\begin{aligned} & 170291 \\ & 175571 \\ & 223763 \end{aligned}$ | Mean of the 3d, and of the result of the small triaggulation. |
| 14 | Kedàr Kanta, . . . . . . Bairát,. Surkànda, | $\begin{array}{lll} 94 & 43 & 06 \\ 50 & 58 & 16 \end{array}$ | $\begin{array}{ll} 31 & 18 \\ 94 & 40 \\ 94 & 05 \\ 50 & 58 \\ \hline \end{array}$ | $\left.\begin{array}{llll} 0 & 248 & 963 \\ 9 & 998 & 526 \\ 9 & 890 & 323 \end{array} \right\rvert\,$ | $\begin{array}{llll} 5 & 105 & 483 \\ 5 & 352 & 972 \\ 5 & 244 & 769 \end{array}$ | $\begin{aligned} & 127492 \\ & 225410 \\ & 175699 \end{aligned}$ |  |
| 15 | Uchalarín, <br> Surkanda, <br> Buirát, $\qquad$ $\qquad$ | 321904 88 59 58 59 -180 -181 | $\begin{aligned} & 321138 \\ & 885854 \\ & 58 \quad 4928 \end{aligned}$ | $\begin{array}{lll} 0 & 273 & 447 \\ 9 & 999 & 931 \\ 9 & 939 & 963 \end{array}$ | $\left.\begin{array}{\|lll} 9 & 105 & 483 \\ 5 & 378 & 861 \\ 5 & 511 & 193 \end{array} \right\rvert\,$ | $\begin{aligned} & 127492 \\ & 239256 \\ & 204735 \end{aligned}$ |  |
| 16 | Chứr, ...... Bcluille,... Black E., | 974209 424546 | 9742 <br> 42 <br> 42 |  | 5 703 321 <br> 5 539  <br> 5 511 1288 | $\begin{aligned} & 505035 \\ & 346005 \\ & 324435 \\ & \hline \end{aligned}$ |  |
| $17^{\prime}$ |  | $\begin{array}{llll}79 & 14 & 17 \\ 43 & 06 & 39\end{array}$ | $\begin{array}{rl} 791412 \\ 43 & 0631 \\ 57 & 39 \\ \hline \end{array}$ | $\left.\begin{array}{lll\|} 9 & 992 & 291 \\ 9 & 834 & 671 \\ 0 & 073 & 229 \end{array} \right\rvert\,$ | $\left.\begin{array}{\|lll\|} \hline & 539 & 058 \\ 5 & 381 & 438 \\ 5 & 573 & 538 \end{array} \right\rvert\,$ | $\begin{aligned} & 345986 \\ & 240679 \\ & 297535 \end{aligned}$ |  |
| 18 | Chur, ... Black E. | 53 91 91 | $\begin{array}{lll} 53 & 26 & 36 \\ 81 & 39 & 31 \\ 34 & 53 & 51 \end{array}$ | $\begin{array}{lll} 9 & 904 & 860 \\ 9 & 999 & 818 \\ 0 & 242 & 520 \end{array}$ | $\begin{array}{\|llll} 5 & 443 & 845 \\ 5 & 538 & 803 \\ 5 & 296 & 465 \end{array}$ | $\begin{aligned} & 277872 \\ & 345789 \\ & 197909 \end{aligned}$ |  |
| 19 | Chur Buintit, <br> Black E. | 450539 1064618 | $2808 \quad 12$ | 0850 187  <br> 9 981 124 <br> 0 326 448 | $\|$5 407 827 <br> 5 538  <br> 5 2384  | $\begin{aligned} & 255757 \\ & 345751 \\ & 170291 \\ & \hline \end{aligned}$ |  |


| No | Names of Stations. | Observed Angles Re. duced to Centre. | Angles for Calculation. | Logarithmic Sines. | Logarithms of Sides op. posite. | Sides in Feet. | Remarks. | | |
|---|---|---|---|---|---|---|---|---|---|
|  |  | $\begin{array}{llll}96 & 29 & 02 \\ 42 & 54 & 11\end{array}$ | $\begin{array}{lll} 96 & 28 & 53 \\ 42 & 54 & 02 \\ 40 & 37 & 04 \\ \hline \end{array}$ | \|llll|l|997 215 <br> 9 832 <br> 0 1864 | 5 694 756 <br> 5 530 515 <br> 5 511 128 | $\begin{aligned} & 495172 \\ & 339 \quad 246 \\ & 3242435 \end{aligned}$ |  |
| 21 | $\left\lvert\, \begin{aligned} & \text { Char }, \ldots . . . . . . . . . . . . . . . ~\end{aligned}\right.$ | 415346 784249 | $\begin{array}{lll} 41 & 53 & 41 \\ 78 & 42 & 44 \\ 59 & 23 & 35 \\ \hline \end{array}$ | $\begin{array}{lll} 9 & 824 & 623 \\ 9 & 991 & 518 \\ 0 & 065 & 158 \\ \hline \end{array}$ | $\begin{array}{lll} 5 & 363 & 319 \\ 5 & 530 & 214 \\ 5 & 473 & 538 \\ \hline \end{array}$ | $\begin{array}{r} 230844 \\ 339011 \\ 297 \quad 535 \\ \hline \end{array}$ |  |
| 22 | $\left\lvert\, \begin{aligned} & \text { Bairát, } \ldots . . . . . . . . . . . . . . . . . . . . . . ~\end{aligned}\right.$ | 1072829 | $\left\lvert\, \begin{array}{lll}107 & 28 & 26 \\ 43 & 52 & 57 \\ 28 & 38 & 37\end{array}\right.$ | $\left\lvert\, \begin{array}{llll}9 & 979 & 482 \\ 9 & 840 & 847 \\ 0 & 319 & 342\end{array}\right.$ | $\left\|\begin{array}{ccc}5 & 530 \\ 5 & 391 \\ 5 & 231 & 381 \\ 5 & 231 & 192\end{array}\right\|$ | $\begin{aligned} & 338856 \\ & 246253 \\ & 170291 \end{aligned}$ | The 3 values of this distance are $\left.\begin{array}{ll}338 \\ 339 & 211 \\ 3\end{array}\right\}$ Mean, $\left.\begin{array}{lll}339 & 211 \\ 339 & 246\end{array}\right\} 339104$ |
|  | Uchalarú, .............. <br> Bairát, <br> Great E. or Benderpoach, | $\begin{array}{rrr}96 & 07 & 52 \\ 9 & 01 & 12\end{array}$ | $\begin{array}{rrrr} 96 & 07 & 51 \\ 9 & 01 & 11 \\ 74 & 50 & 57 \end{array}$ | $\begin{array}{lll} 9 & 997 & 509 \\ 9 & 195 & 275 \\ 0 & 015 & 364 \end{array}$ | $\left.\begin{array}{llll} 5 & 391 & 734 \\ 4 & 589 & 500 \\ 5 & 378 & 861 \end{array} \right\rvert\,$ | $\begin{array}{r} 246453 \\ 38860 \\ 239256 \\ \hline \end{array}$ |  |
| 24 | \| $\begin{aligned} & \text { Uchalari, } \\ & \text { Surkunda, .............. } \\ & \text { Great İ. or Benderpooch, }\end{aligned}$ | $\begin{array}{rrr}128 & 20 & 06 \\ 7 & 37 & 04\end{array}$ | $\begin{array}{r} 1282006 \\ 737 \\ 4402 \\ 440 \\ \hline \end{array}$ | 9 894 536 <br> 9 122 425 <br> 0 157 858 | $\begin{array}{cccc}5 & 363 & 587 \\ 4 & 591 & 476 \\ 5 & 311 & 193\end{array}$ | $\begin{aligned} & 230987 \\ & 390370 \\ & 20-4735 \end{aligned}$ |  |
| 25 | $\left\lvert\, \begin{aligned} & \text { Belville, . ............ } \\ & \text { Charr } \\ & \text { Low E., ................. }\end{aligned}\right.$ |  | 42 <br> 421 <br> 96 <br> 1 | $\begin{array}{lll} 9 & 825 & 705 \\ 9 & 996 & 799 \\ 0 & 182 & 788 \end{array}$ | $\left.\begin{array}{\|lll\|} \hline & 5 & 519 \\ 5 & 621 \\ 5 & 690 & 715 \\ 5 & 511 & 128 \end{array} \right\rvert\,$ | $\begin{aligned} & 330842 \\ & 490586 \\ & .324435 \end{aligned}$ |  |
| 96 | Chúŕ, ................... <br> Surkanda, <br> Low E., | 42 <br> 761 <br> 76 | $\begin{array}{lll} 42 & 21 & 34 \\ 76 & 36 & 10 \\ 61 & 02 & 16 \\ \hline \end{array}$ | $\begin{array}{lll} 9 & 828 & 518 \\ 9 & 988 & 018 \\ 0 & 058 & 022 \\ \hline \end{array}$ | $\begin{array}{lll} 5 & 360 & 078 \\ 5 & 519 & 578 \\ 5 & 473 & 538 \end{array}$ | $\begin{aligned} & 299128 \\ & 330810 \\ & 297 \quad 535 \end{aligned}$ |  |
| 27 | Bairát, Chứr Low E. | 1055839 442053 | $\begin{array}{rrr} 105 & 58 & 34 \\ 44 & 20 & 50 \\ 29 & 40 & 34 \end{array}$ | $\begin{array}{lll} 9 & 982 & 393 \\ 9 & 844 & 480 \\ 0 & 305 & 310 \end{array}$ | $\left.\begin{array}{lll} 5 & 519 & 395 \\ 5 & 380 & 98 \\ 5 & 331 & 182 \end{array} \right\rvert\,$ | $\begin{aligned} & 330670 \\ & 240426 \\ & 170 \quad 291 \end{aligned}$ | The 3 values of this distance are 330842 Mean, $\left.\begin{array}{l}810 \\ 670\end{array}\right\} 330774$ |


| No. | Names of Stations. | $\left\lvert\, \begin{gathered} \text { Observed } \\ \text { Angles Re- } \\ \text { ducced to } \\ \text { Centre. } \end{gathered}\right.$ | $\begin{gathered} \text { Angles for } \\ \text { Culculation. } \end{gathered}$ | $\left\|\begin{array}{c} \text { Lagarithmic } \\ \text { Sines. } \end{array}\right\|$ | $\begin{array}{\|c\|} \begin{array}{c} \text { Logararithms } \\ \text { of } \\ \text { Sides op- } \\ \text { posile. } \end{array} \\ \hline \end{array}$ | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | Chúr' <br> Bhadraj, <br> The Cone or S. No. 35 | $\begin{aligned} & 6.512^{\prime \prime} \quad 5^{\prime \prime} \\ & 8052 \quad 22 \end{aligned}$ |  | $\left.\begin{array}{llll} 9 & 960 & 298 \\ 9 & 994 & 464 \\ 0 & 960 & 917 \end{array} \right\rvert\,$ | $\left.\begin{array}{llll} 3 & 517 & 680 \\ 5 & 551 & 846 \\ 5 & 296 & 465 \end{array} \right\rvert\,$ | $\begin{aligned} & 329367 \\ & 356325 \\ & 197909 \\ & \hline \end{aligned}$ |  |
| 9 |  | $\begin{array}{llll}57 & 31 & 24 \\ 94 & 00 & 18\end{array}$ | $\begin{array}{lll} 57 & 31 & 21 \\ 94 & 00 & 15 \\ 28 & 28 & 24 \\ \hline \end{array}$ | $\begin{array}{ccc\|} \hline & 996 & 138 \\ 9 & 998 & 938 \\ 0 & 392 & 938 \\ \hline \end{array}$ | $\begin{array}{\|llll} 3 & 5 & 479 & 032 \\ 3 & 5 & 551 & 832 \\ 2 & 5 & 231 & 192 \\ \hline \end{array}$ | $\begin{array}{r} 301323 \\ 356313 \\ 170291 \\ \hline \end{array}$ |  |
| 30 | Chư: Betrille, IThe Cone ( $S$ ) No. 35, | $\left\|\begin{array}{rrr} 110 & 07 & 54 \\ 36 & 49 & 20 \end{array}\right\|$ | $\left\|\begin{array}{rrr} 110 & 07 & 46 \\ 36 & 49 & 12 \\ 33 & 03 & 02 \end{array}\right\|$ | $\left.\begin{array}{lll\|} \hline 9 & 972 & 697 \\ 9 & 777 & 646 \\ 0 & 963 & 312 \end{array} \right\rvert\,$ | $\left.\left\|\begin{array}{lll} 5 & 747 & 067 \\ 5 & 552 & 080 \\ 5 & 5 & 511 \\ \hline \end{array}\right\| 128 \right\rvert\,$ | $\begin{aligned} & 558557 \\ & 356522 \\ & 324435 \end{aligned}$ |  |
| 31 | Chúr <br> Bedville, <br> L. No. 40, | 115   <br> 39 32 50 | $\begin{array}{rrr} 115 & 32 & 43 \\ 32 & 02 & 00 \\ 32 & 95 & 19 \\ \hline \end{array}$ | 9955324 <br> 9724624 <br> 0270714 | $\begin{array}{\|lll\|} \hline 5737 & 166 \\ 5 & 506 & 466 \\ 5 & 511 & 128 \\ \hline \end{array}$ | $\begin{aligned} & 545968 \\ & 320971 \\ & 394435 \\ & \hline \end{aligned}$ |  |
| 32 | Chuŕr.... <br> L. No. 40 | 60 <br> 63 <br> 63 <br> 11 <br> 17 | $\left\lvert\, \begin{array}{lll} 60 & 57 & 37 \\ 63 & 11 & 10 \\ 55 & 51 & 12 \end{array}\right.$ | $\left.\begin{array}{llll} 9 & 941 & 652 \\ 9 & 950 & 597 \\ 0 & 082 & 178 \end{array} \right\rvert\,$ | $\left.\begin{array}{lll} 2 & 5 & 497 \\ 5 & 368 \\ 5 & 506 & 313 \\ 5 & 473 & 538 \end{array} \right\rvert\,$ | $\begin{aligned} & 314317 \\ & 320858 \\ & 2975355 \\ & \hline \end{aligned}$ |  |
| 33 | $\begin{aligned} & \left\lvert\, \begin{array}{l} \text { Chir }, \ldots \ldots \ldots . \\ 3 \\ \text { Bairat }, \ldots \ldots . . \\ \text { Li. No. 40, } \end{array}\right. \end{aligned}$ | $\begin{array}{lll} 69 & 57 & 02 \\ 85 & 07 & 53 \end{array}$ | $\begin{aligned} & 625658 \\ & 850749 \\ & 3155 \quad 13 \end{aligned}$ | $\left.\begin{array}{llll} \hline & 949 & 685 \\ 9 & 998 & 430 \end{array} \right\rvert\,$ $0276759$ | $\begin{array}{llll} 5 & \left.\begin{array}{lll} 5 & 457 & 636 \\ 5 & 506 & 381 \\ 5 & 5061 \\ 5 & 231 & 192 \end{array} \right\rvert\, \end{array}$ | $\begin{aligned} & 286837 \\ & 390908 \\ & 170 \\ & 170 \end{aligned}$ |  |
| 34 | $\begin{array}{\|l} \text { Chundpuir, .... } \\ \text { Surkanda,.... } \\ \text { L. No. 40,... } \end{array}$ | $\begin{array}{ll} 70 & 27 \\ 66 & 59 \\ 66 \end{array}$ | $\left\lvert\, \begin{array}{lll} 70 & 27 & 00 \\ 66 & 59 & 37 \\ 42 & 33 & 24 \end{array}\right.$ | $\begin{array}{lll}9 & 974 & 213 \\ 9 & 964 & 006 \\ 0 & 169 & 848\end{array}$ | $\left.\begin{aligned} & 3 \\ & 3 \end{aligned} \begin{array}{llll} 5 & 497 & 365 \\ 5 & 487 & 158 \\ 5 & 353 & 304 \end{array} \right\rvert\,$ | $\begin{aligned} & 314315 \\ & 307014 \\ & 225 \quad 582 \end{aligned}$ |  |
| ${ }^{35}$ | Chúr <br> Black E. <br> Whartiú fort, | 77 <br> 78 <br> 78 <br> 809 | 770915 <br> 7840 <br> 78.4030 | $\left.\begin{array}{ccc} 9 & 988 & 992 \\ 9 & 612 & 205 \\ 0 & 008 & 540 \end{array} \right\rvert\,$ | $\left.\begin{array}{l\|lll} 2 & 536 & 459 \\ 5 & 5 & 159 & 672 \\ 5 & 538 & 927 \end{array} \right\rvert\,$ | $\begin{aligned} & 343921 \\ & 144435 \\ & 345881 \end{aligned}$ |  |


| No | Names of Stations. | Observed Angles Reduced to Centre. | Angles for Calculation. | Logarithmic Sines. | $\left\lvert\, \begin{gathered}\text { Logarithms } \\ \text { of Sides op- } \\ \text { posite. }\end{gathered}\right.$ | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 36 | $\left\lvert\, \begin{aligned} & \text { Chust, } \\ & \text { Great E. . . . . . . . . . . . . . . . . . . . . } \\ & \text { Whartú } \\ & \text { fort, . . . . . . . }\end{aligned}\right.$ |  | $\begin{array}{llll} \\ 78 & 24 & 06 \\ 24 & 31 & 94 \\ 77 & 04 & 29\end{array}$ | $\left\lvert\, \begin{array}{lll}9 & 991 & 040 \\ 9 & 613 & 115 \\ 0 & 011 & 146\end{array}\right.$ | $\left\lvert\, \begin{array}{llll}5 & 532 & 519 \\ 5 & 159 & 594 \\ 5 & 530 & 333\end{array}\right.$ | 340815  <br> 144 409 <br> 339 104 |  |
|  | Chúr <br> Low E.,.... ............. <br> Whartú fort, | $\begin{array}{lll} 77 & 56 & 16 \\ 76 & 55 & 00 \\ \hline \end{array}$ | 77 56 13 <br> 25 08 50 <br> 76 54 57 | $\begin{array}{\|lll\|}9 & 990 & 302 \\ 9 & 628 & 333 \\ 0 & 011 & 424\end{array}$ | $\begin{array}{lll}5 & 521 & 257 \\ 5 & 159 & 288 \\ 5 & 519 & 531\end{array}$ | 332 091 <br> 144 304 <br> 330 774 |  |
| 38 | $8 \left\lvert\, \begin{aligned} & \text { Chür', ........ . . . . . . . . . . . . . } \\ & \text { 'The Cone, . . . . . } \\ & \text { Whurtú fort, . . . . . . . . . }\end{aligned}\right.$ | $\begin{array}{lll} 64 & 43 & 39 \\ 91 & 22 & 24 \end{array}$ | $\begin{array}{llll}64 & 43 & 35 \\ 23 & 54 & 05 \\ 91 & 22 & 20\end{array}$ | $\begin{array}{llll}9 & 956 & 302 \\ 9 & 607 & 630 \\ 0 & 000 & 125\end{array}$ | $\begin{array}{llll}5 & 508 & 349 \\ 5 & 159 & 677 \\ 5 & 551 & 922\end{array}$ | 322366 <br> 144 <br> 356 <br> 356 |  |
| 39 | $9 \left\lvert\, \begin{aligned} & \text { L., ................... } \\ & \text { Chü, . . . . . . . . . . } \\ & \text { Whartu fort, . . . . . . . . }\end{aligned}\right.$ | $\begin{array}{lll}59 & 18 & 14 \\ 93 & 59 & 56\end{array}$ | $\begin{array}{lll}21 & 41 & 56 \\ 59 & 18 & 11 \\ 93 & 59 & 53\end{array}$ | $\begin{array}{lll}9 & 652 & 538 \\ 9 & 934 & 437 \\ 0 & 001 & 058\end{array}$ | 5 159 982 <br> 5 441 881 <br> 5 506 386 | $\begin{array}{ll} 144 & 538 \\ 276 & 618 \\ 320 & 912 \end{array}$ | The several values of this distance are $\begin{array}{r} 144435 \\ 409 \\ 304 \\ 437 \end{array}>_{144425}$ |
| 40 | $\left\lvert\, \begin{aligned} & \text { Chúŕ,. . . . . . . . . . . . . . . . } \\ & \text { Belville, . . . . . . . . . . } \\ & \text { No. } 50 \text { Raldeng, . . . . . . }\end{aligned}\right.$ | $\begin{array}{\|rrr\|}127 & 03 & 07 \\ 28 & 06 & 28\end{array}$ | $\begin{array}{rrr}127 & 03 & 00 \\ 28 & 06 & 21 \\ 24 & 50 & 40\end{array}$ | $\begin{array}{llll}9 & 902 & 063 \\ 9 & 673 & 115 \\ 0 & 376 & 589\end{array}$ | $\left\|\begin{array}{cccc}5 & 789 & 780 \\ 5 & 560 & 832 \\ 5 & 511 & 128\end{array}\right\|$ | 616 283 <br> 363 774 <br> 324 435 |  |
| 41 | Chúr <br> Bairát, ...................... <br> No. 50 Raldeng, .......... | $\begin{array}{llll}74 & 26 & 48 \\ 78 & 14 & 47\end{array}$ | $\begin{array}{lll}74 & 26 & 43 \\ 78 & 14 & 42 \\ 27 & 18 & 34\end{array}$ | $\left\lvert\, \begin{array}{lll}9 & 983 & 795 \\ 9 & 990 & 795 \\ 0 & 338 & 380\end{array}\right.$ | $\left\|\begin{array}{llll}5 & 553 & 367 \\ 5 & 560 & 367 \\ 5 & 231 & 192\end{array}\right\|$ | 357575 363385 170991 |  |
| 42 |  | $\begin{array}{llll}62 & 59 & 56 \\ 76 & 12 & 51\end{array}$ | $\begin{array}{lll}62 & 59 & 51 \\ 76 & 12 & 46 \\ 40 & 47 & 24\end{array}$ | $\left\lvert\, \begin{array}{lll}9 & 949 & 871 \\ 9 & 987 & 303 \\ 0 & 184 & 895\end{array}\right.$ | $\begin{array}{llll}5 & 488 & 070 \\ 5 & 595 & 502 \\ 5 & 353 & 304\end{array}$ | $\begin{array}{r}307659 \\ 335 \\ 353 \\ 225 \\ \hline\end{array}$ |  |
|  | $\left\lvert\, \begin{aligned} & \text { Belville, ... ............... } \\ & \text { Whartu, } \\ & \text { No. } 46, \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~\end{aligned}\right.$ | $\begin{array}{lll}27 & 23 & 08 \\ 95 & 36 & 16\end{array}$ | $\begin{array}{llll}27 & 22 & 59 \\ 95 & 36 & 07 \\ 57 & 00 & 55\end{array}$ | $\left\lvert\, \begin{array}{lll}9 & 662 & 698 \\ 9 & 997 & 921 \\ 0 & 076 & 334\end{array}\right.$ | (1)cc\| $\begin{array}{ccc}5 & 409 & 706 \\ 5 & 744 & 929 \\ 5 & 670 & 674\end{array}$ | 256866 <br> 555813 <br> 468462 |  |


| No. | Names of Stations. | $\left\|\begin{array}{c}\text { Observed } \\ \text { Angles } \\ \text { Re- } \\ \text { duced to } \\ \text { Centre. }\end{array}\right\|$ | Angles for Calculation. | Logarithmic <br> Sines. | Logarithms of Sides opposite. | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 44 | Belville, <br> Surkanda, <br> No. 46, |  | $\left\|\begin{array}{rrr\|} \\ 28 & 55 & 31 \\ 126 & 40 & 16 \\ 24 & 23 & 58\end{array}\right\|$ | $\left.\begin{array}{lll\|} \hline & 684 & 571 \\ 9 & 904 & 216 \\ 0 & 383 & 949 \end{array} \right\rvert\,$ | 5 525 187 <br> 5 744 832 <br> 5 456 667 | $\begin{aligned} & 335110 \\ & 555 \\ & 289 \\ & 286 \\ & \hline \end{aligned}$ |  |
| 45 |  | $\begin{array}{llll}67 & 52 & 50 \\ 68 & 41 & 38\end{array}$ | 67 <br> 67 <br> 68 <br> 48 <br> 43 <br> 43 <br> 1 | $\begin{array}{ccc} 9 & 966 & 795 \\ 9 & 969 & 250 \\ 0 & 162 & 761 \end{array}$ | $\left\|\begin{array}{llll\|} 5 & 489 & 860 \\ 5 & 485 & 315 \\ 5 & 353 & 304 \end{array}\right\|$ | $\begin{aligned} & 303990 \\ & 305714 \\ & 225582 \end{aligned}$ |  |
| 46 | Bairát, Surkanda, $a$ No. 1, (No. 39), | $\begin{array}{llll}87 & 40 & 04 \\ 67 & 33 & 23\end{array}$ | $\begin{array}{lll} 87 & 40 & 01 \\ 67 & 33 & 20 \\ 94 & 46 & 39 \\ \hline \end{array}$ | $\begin{array}{ccc} 9 & 999 & 6 \not 00 \\ 9 & 965 & 789 \\ 0 & 377 & 687 \\ \hline \end{array}$ | $\left[\left.\begin{array}{lll} 5 & 482 & 810 \\ 5 & 448 & 959 \\ 5 & 105 & 483 \end{array} \right\rvert\,\right.$ | $\begin{aligned} & 303955 \\ & 281164 \\ & 127492 \\ & \hline \end{aligned}$ |  |
| 47 | Bairát, Surkanda, a No. 2, | $\begin{array}{lll} 87 & 96 & 32 \\ 67 & 48 & 26 \end{array}$ | 87 96 29 <br> 67 48 93 <br> 24 45 08 | 9 999 567 <br> 9 966 570 <br> 0 378 102 | $\left\|\begin{array}{lll} 5 & 483 & 152 \\ 5 & 450 & 155 \\ 5 & 105 & 48 \end{array}\right\|$ | $\begin{aligned} & 304195 \\ & 281999 \\ & 127499 \end{aligned}$ |  |
| 48 | Chandpür, <br> Surkanda, Kot-Gurk peak, | $\left\{\begin{array}{rrr} 118 & 49 & 26 \\ 37 & 42 & 01 \end{array}\right.$ | $\left.\begin{array}{rrr} 118 & 49 & 21 \\ 37 & 41 & 56 \\ 23 & 28 & 43 \end{array} \right\rvert\,$ | $\left.\begin{array}{lll} 9 & 942 & 562 \\ 9 & 786 & 405 \\ 0 & 399 & 673 \end{array} \right\rvert\,$ | $\begin{array}{\|lll\|} \hline 5 & 695 & 539 \\ 5 & 539 & 382 \\ 5 & 353 & 304 \\ \hline \end{array}$ | $\begin{aligned} & 496065 \\ & 346 \\ & 244 \\ & 225 \\ & 589 \end{aligned}$ |  |
| 49 | Chandpür, <br> Kedar Kanta, <br> Kot-Gerh peak, | $\begin{array}{llll}54 & 56 & 31 \\ 90 & 12 & 34\end{array}$ | $\begin{array}{lll} 54 & 56 & 26 \\ 90 & 12 & 29 \\ 34 & 51 & 04 \\ \hline \end{array}$ | $\left.\begin{array}{lll\|} \hline & 913 & 049 \\ 9 & 999 & 997 \\ 0 & 243 & 025 \end{array} \right\rvert\,$ | $\left\|\begin{array}{llll} 5 & 452 & 770 \\ 5 & 539 & 718 \\ 5 & 296 & 696 \end{array}\right\|$ | $\begin{aligned} & 283642 \\ & 346 \\ & 1912 \\ & 198 \end{aligned} 014$ |  |
| 50 | $\left\|\begin{array}{l}\text { Chuŕr, ................... } \\ \text { Surkenda, } \\ \text { Pyramidal peak hither range, }\end{array}\right\|$ | $\begin{array}{lll}88 & 44 & 26 \\ 40 & 38 & 07\end{array}$ | $\begin{array}{lll} 88 & 44 & 20 \\ 40 & 38 & 01 \\ 50 & 37 & 39 \\ \hline \end{array}$ | $\left.\begin{array}{llll} 9 & 994 & 929 \\ 9 & 813 & 742 \\ 0 & 111 & 799 \end{array} \right\rvert\,$ | $\begin{array}{lll} \hline 5 & 580 & 266 \\ 5 & 399 & 079 \\ 5 & 473 & 538 \\ \hline \end{array}$ | $\begin{aligned} & 380423 \\ & 250656 \\ & 297535 \end{aligned}$ |  |
| 51 | Chüŕr Whartiv, Pyramidal peak hither range, | $\left\lvert\, \begin{array}{\|rrr\|}31 & 31 & 37 \\ 117 & 50 & 00\end{array}\right.$ | $\left.\begin{array}{\|rrr\|} \hline 31 & 31 & 35 \\ 117 & 49 & 58 \\ 30 & 38 & 26 \end{array} \right\rvert\,$ | $\left.\begin{array}{llll} 9 & 718 & 411 \\ 9 & 940 & 606 \\ 0 & 292 & 728 \end{array} \right\rvert\,$ | $\begin{array}{llll} 5 & 170 & 781 \\ 5 & 398 & 976 \\ 5 & 159 & 642 \\ \hline \end{array}$ | $\begin{aligned} & 148177 \\ & 250597 \\ & 144 \\ & 495 \\ & \hline \end{aligned}$ |  |
| 52 | Chúr Surkanda, Peak $a$, hither range, | $\begin{array}{lll} 90 & 30 & 04 \\ 40 & 04 & 25 \end{array}$ | $\begin{array}{lll} 90 & 29 & 58 \\ 40 & 04 & 19 \\ 49 & 25 & 43 \\ \hline \end{array}$ | $\left.\begin{array}{lll} 9 & 999 & 983 \\ 9 & 808 & 717 \\ 0 & 119 & 417 \end{array} \right\rvert\,$ | $\begin{array}{\|lll} 5 & 592 & 938 \\ 5 & 401 & 672 \\ 5 & 473 & 598 \\ \hline \end{array}$ | 391686 <br> 252158 <br> 297535 |  |


| No. | NJames of Stations. |  | Angles for Calculdation. | Logarithmic | $\left\|\begin{array}{c} \text { Logarith ms } \\ \text { of sides op. } \\ \text { posite. } \end{array}\right\|$ | $\begin{gathered} \text { Sides in in } \\ \text { Feet. } \end{gathered}$ | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $53$ | Whartú, <br> Chúrr, <br> Peak $a$, hither fange |  | $\left\|\begin{array}{ccc} 120 & 4 & 4 \\ 20 & 43 \\ 29 & 45 & 59 \\ 29 & 30 & 08 \end{array}\right\|$ | $\begin{gathered} 9934281 \\ 9 \\ 9 \\ 9 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \begin{array}{l} 252089 \\ 145 \\ 14500 \\ 144 \\ 425 \end{array} \end{aligned}$ |  |
|  | Bairat <br> Surkanda, <br> II. left peak, | $\begin{aligned} & 762859 \\ & 7501595 \\ & 7501 \end{aligned}$ | $\begin{array}{\|ccc\|} 76 & 28 & 49 \\ 75 & 01 \\ \hline 88 & 29 \\ \hline 8 \end{array}$ | $\begin{array}{\|c\|} \hline 9987 \\ 9 \\ 9 \\ 9 \\ 985060 \\ \hline \end{array}$ |  |  |  |
|  |  | $\begin{array}{llll} 98 & 51 & 10 \\ 50 & 32 & 10 \end{array}$ | $\left\lvert\, \begin{array}{lll} 98 & 51 & 07 \\ 50 & 39 & 07 \\ \hline & 30 & 36 \\ \hline 0 & 47 \\ \hline \end{array}\right.$ | $\begin{aligned} & 9994796 \\ & 9887 \\ & 0896 \\ & 029080 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l\|l\|} 5 & 519 & 068 \\ 5 & 411 \\ 5 & 411 & 898 \\ 5 & 231 & 199 \\ \hline \end{array}$ | $\begin{aligned} & 330429 \\ & 258 \\ & 2651 \\ & 170 \\ & 291 \\ & \hline \end{aligned}$ |  |
|  |  | $\left\lvert\, \begin{array}{r\|r\|} 103 & 07 \\ 38 & 57 \\ 38 & 37 \end{array}\right.$ | $\begin{array}{r} 103 \\ 38 \\ 38 \\ 38 \\ 38 \\ 38 \\ \hline 0047 \\ \hline \end{array}$ | $\begin{aligned} & 9988995 \\ & 9 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{array}{\|ccc\|} \hline 5 & 510 & 154 \\ 5 & 510 \\ 5 & 519 & 188 \\ \hline & 511 & 128 \end{array}$ | $\begin{aligned} & 513.044 \\ & 330.512 \\ & 324435 \\ & \hline \end{aligned}$ |  |
|  | Surkanda, <br> Buirát <br> IF. middle peak. | 752851 760317 | $\begin{array}{\|} 75 & 28 & 48 \\ 768 & 03 \\ \hline 88 & 27 \\ \hline 8 & 27 & 57 \\ \hline \end{array}$ | $\begin{aligned} & 9985902 \\ & 9 \\ & 9 \\ & \hline 987 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|lll\|} \hline 5 & 413 & 198 \\ \hline & 5 & 414 & 30 \\ \hline & 5 & 105 & 483 \\ \hline \end{array}$ |  |  |
|  | Bairát <br> Chír <br> H. middle peak | $\begin{aligned} & 99 \quad 1638 \\ & 50 \quad 20 \quad 23 \end{aligned}$ | $\begin{array}{r} 991635 \\ 502020 \\ 3020 \\ 30 \\ \hline \end{array}$ | $\begin{array}{l\|l\|} 9994283 \\ 9886391 \\ 0 & 296004 \\ \hline \end{array}$ | $\begin{array}{\|l\|l\|l\|l\|} \hline & 5 & 521 & 479 \\ \hline & 5 & 413 & 587 \\ \hline & 5 & 231 & 192 \\ \hline \end{array}$ | $\begin{array}{r} 339 \\ 2591 \\ 29191 \\ 170 \\ \hline 291 \\ \hline \end{array}$ |  |
| $\|59\|$ | Bebvible, <br> H. middle peak $\qquad$ | $: \begin{array}{r} 1025610 \\ 39 \\ 39450 \end{array}$ | $\left\|\begin{array}{llll} 102 & 56 & 02 \\ 39 & 04 \\ 37 & 04 & 48 \\ \hline & 19 \end{array}\right\|$ | $\begin{aligned} & 9988839 \\ & 9 \\ & 9796290 \\ & 0 \end{aligned}$ | $\begin{array}{\|l\|lll\|} \hline & 5 & 710 & 757 \\ \hline & 5 & 521 & 538 \\ \hline & 5 & 511 & 538 \\ \hline \end{array}$ | $\begin{aligned} & 513756 \\ & 33296 \\ & 394435 \\ & \hline \end{aligned}$ |  |
|  | Bairat, <br> Surkunda, <br> II. right peak, | 7545 <br> 75 <br> 57 <br> 7 | $\left\|\begin{array}{ccc} 75 & 45 & 24 \\ 75 & 5 & 14 \\ \hline 85 & 57 & 14 \\ \hline 8 & 17 & 21 \end{array}\right\|$ |  |  |  |  |
|  | Bairát <br> Chur <br> H. right peak | $\begin{aligned} & 093528 \\ & 5017 \\ & 50 \\ & \hline 17 \end{aligned}$ | $\begin{array}{ll} 99 & 31 \\ 50 & 25 \\ 50 & 17 \\ 80 & 08 \\ \hline 0 \end{array}$ | $\begin{gathered} 9993909 \\ 9886 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$ |  | $\begin{aligned} & 334455 \\ & 260911 \\ & 260 \\ & 170 \\ & \hline \end{aligned}$ |  |



| No. | Names of Stations. | $\|$Observield <br> Angles. Re <br> duced to <br> Contre. | Angles for Calculalion | $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Sins. } \end{array}$ | $\left\lvert\, \begin{gathered} \text { Logarithmons } \\ \text { of Sidse op- } \\ \text { posite. } \end{gathered}\right.$ | $\begin{aligned} & \text { Sides in } \\ & \text { Feet. } \end{aligned}$ | Renarts. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $71$ | $\begin{gathered} \begin{array}{c} \text { Uchalíán, } \\ \text { Scrkanda, } \\ \text { F.... } \end{array}, \end{gathered}$ |  |  | $\begin{array}{lll} 9 & 925 & 379 \\ 9 & 404 & 475 \\ 0 & 168 & 976 \end{array}$ |  | $\begin{aligned} & 254.414 \\ & 76673 \\ & 204735 \\ & \hline \end{aligned}$ |  |
|  | $\begin{aligned} & \text { Chut }, \\ & \text { Belouile, } \\ & \text { E. } \end{aligned}$ | 84 62018 |  | $\begin{aligned} & 9998.252 \\ & 9 \\ & 9939 \\ & 0 \\ & 0 \end{aligned} 244601$ | $\begin{array}{\|ccc\|} \hline 5 & 753 \\ 5 & 981 \\ 5 & 695 & 125 \\ 5 & 511 & 128 \\ \hline \end{array}$ |  |  |
| $73$ | $\begin{array}{\|l} \text { Bairitat, } \\ \text { Belvile, } \\ \text { D. } \end{array}$ | $\left\{\begin{array}{r} 1305193 \\ 2857.30 \\ 57 \end{array}\right.$ |  | $\begin{array}{r} 9878735 \\ 9684978 \\ 0462056 \\ \hline \end{array}$ | $\left\lvert\, \begin{array}{ll} 5 & 754 \\ 5 & 262 \\ 5 & 560 \\ 5 & 565 \\ 5 & 413 \\ \hline \end{array}\right.$ |  |  |
| 74 |  | $\left\lvert\, \begin{array}{rr} 463746 \\ 113.4448 \end{array}\right.$ |  |  |  | $\left\lvert\, \begin{aligned} & 275939 \\ & 477455 \\ & 127492 \\ & \hline \end{aligned}\right.$ |  |
| 75 | $\begin{aligned} & \text { Buiŕt, }, \\ & 5 \text { Bebrile, }, \\ & \text { M. } \end{aligned}$ | $\left\lvert\, \begin{array}{ccc} 135 & 21 & 04 \\ 25 & 45 & 25 \end{array}\right.$ |  | $\left\lvert\, \begin{array}{ll} 9 & 846 \\ 9 & 818 \\ 9 & 638 \\ 0 & 489 \\ 0 & 682 \end{array}\right.$ |  |  |  |
| 76 | $\begin{array}{\|l} \text { Buirat, }, \\ \text { Wharbio, } \\ \text { M. } \end{array}$ | $\begin{array}{rl} 109 & 9531 \\ 44 & 03 \\ 58 \end{array}$ | $\left\lvert\, \begin{aligned} & 10292 \\ & 1024 \\ & 44 \\ & 408 \\ & 33 \\ & 30 \\ & 30 \\ & 51 \end{aligned}\right.$ | $\begin{aligned} & 9989714 \\ & 9842974 \\ & 08257964 \end{aligned}$ | $\left.\begin{array}{lll} 5 & 688 & 495 \\ 5 & 540 \\ 5 & 540 \\ 5 & 745 \end{array}\right]$ | $\begin{aligned} & -488006 \\ & \begin{array}{l} 477 \\ \hline 1759 \\ 275 \\ 8979 \end{array} \end{aligned}$ |  |
| 77 | Kedar Kanta, <br> Surkanda,. <br> The pyramid | 725958 615242 | $\begin{aligned} & 725953 \\ & 615237 \\ & 450731 \\ & \hline \end{aligned}$ | $\begin{array}{r} 9980592 \\ 9945488 \\ 0149568 \\ \hline \end{array}$ | $\left.\begin{array}{r} 5483 \\ 54894 \\ 54890 \\ 5.353 \\ 5.304 \end{array}\right]$ |  |  |
|  | Belville, <br> Keciar Kanta <br> The pyramid, | $\left\lvert\, \begin{array}{r\|r} 264046 \\ 109 & 21 \\ 1 \end{array}\right.$ | $\left\lvert\, \begin{array}{rr} 26 & 40 \\ 10 & 37 \\ 109 & 21 \\ 43 & 57 \\ \hline 10 \end{array}\right.$ |  |  |  |  |
| 79 | Chúr <br> Belville <br> R mid le peak, | $\begin{aligned} & 825808 \\ & 6529 \\ & 68 \end{aligned}$ | $\begin{array}{r} 895754 \\ 652924 \\ 613243 \\ \hline \end{array}$ | $\begin{array}{r} 9996718 \\ 9995888 \\ 0981858 \\ 0 \\ \hline \end{array}$ | $\left[\begin{array}{ll} 5789 & 701 \\ 5 & 751471 \\ 57514 \\ 5 & 511 \end{array}\right]$ |  |  |



| No. Names of Stations. | $\begin{gathered} \text { Observed } \\ \text { Angles Re- } \\ \text { duced to } \\ \text { Cenire. } \end{gathered}$ | Angles for Calculation. | $\left\|\begin{array}{c} \text { Logarithmic } \\ \text { Sines } \end{array}\right\|$ | $\left\|\begin{array}{l}\text { Logarithoms } \\ \text { of Sides co } \\ \text { ionsite. }\end{array}\right\|$ | Sides in Fet. | Remarks. | |
|---|---|---|---|---|---|---|---|
|  | $\|$0   <br> 53 09 10 <br> 64 39 35 | $\left\|\begin{array}{cccc}53 & 0 & 10 \\ 64 & 13^{\prime \prime} \\ 64 & 39 & 32 \\ 62 & 11 & 16\end{array}\right\|$ | $\begin{array}{lll} 9 & 903 & 223 \\ 9 & 950 & 061 \\ 0 & 053 & 312 \end{array}$ | $\left.\begin{array}{\|ccc\|} \hline & 309 & 839 \\ 5 & 362 & 677 \\ 5 & 353 & 304 \end{array} \right\rvert\,$ | $\begin{array}{r} 204098 \\ 230503 \\ 225 \quad 588 \\ \hline \end{array}$ |  |
| Uchalárún. . . . . . . . . . . . . . . . <br>  | 76 26 26 374930 | $\begin{array}{r} 76 \quad 0348 \\ 26.3729 \\ 77 \quad 1844 \\ \hline \end{array}$ | 9 987 021 <br> 9 651 418 <br> 0 010 737 | $\begin{array}{lll} 5 & 308 & 951 \\ 4 & 973 & \$ 48 \\ 5 & 311 & 193 \\ \hline \end{array}$ | $\begin{array}{r} 203689 \\ 94018 \\ 204735 \\ \hline \end{array}$ |  |
| Uchalárú, <br> 01 Surkanda, .... .................. <br> Q. No. 8, right peak, | $\|$93 11 14 <br> 29 57 50 | $\begin{array}{lll} 93 & 11 & 13 \\ 22 & 57 & 49 \\ 63 & 50 & 58 \\ \hline \end{array}$ | 9 999 328 <br> 9 591 227 <br> 0 046 898 | $\begin{array}{\|lll} 5 & 357 & 419 \\ 4 & 949 & 318 \\ 5 & 311 & 193 \\ \hline \end{array}$ | $\begin{array}{r} 227799 \\ 88985 \\ 204735 \\ \hline \end{array}$ |  |
|  |  | $\begin{array}{r} 113 \\ 130 \\ 17 \\ 18 \\ 48 \\ 48 \\ \hline \end{array}$ | $\begin{array}{lll} 9 & 962 & 380 \\ 9 & 489 & 522 \\ 0 & 125 & 447 \\ \hline \end{array}$ | $\begin{array}{\|lll\|} \hline 5 & 399 & 020 \\ \hline & 926 & 162 \\ \hline & 5 & 311 \\ \hline \end{array}$ | $\begin{array}{r} 250622 \\ 84365 \\ 204735 \\ \hline \end{array}$ |  |
| $93\left\|\begin{array}{c}\text { Úchalárú }, \ldots \ldots \ldots \ldots \ldots \ldots \\ \text { Surkanda, }, \therefore \ldots \ldots \ldots \ldots \ldots \\ \text { C. } 2, \ldots \ldots \ldots \ldots \ldots\end{array}\right\|$ | $\|$96 31 00 <br> 20 50  <br>    | $\begin{array}{lll} 96 & 31 & 05 \\ 20 & 50 & 25 \\ 62 & 38 & 30 \\ \hline \end{array}$ | $\begin{array}{llll} 9 & 997 & 184 \\ 9 & 551 & 162 \\ 0 & 051 & 514 \end{array}$ | $\begin{array}{\|lll} \hline 5 & 359 & 891 \\ 4 & 913 & 869 \\ 4 & 5 & 311 \\ \hline \end{array}$ | $\begin{array}{r} 229029 \\ 82010 \\ 204735 \end{array}$ |  |
|  94 Surkanda; C. | $\begin{array}{llll}64 & 53 & 36 \\ 57 & 04 & 51\end{array}$ | $\begin{array}{lll} 64 & 53 & 32 \\ 57 & 04 & 47 \\ 58 & 01 & 42 \end{array}$ | 9 956 894 <br> 9 923 983 <br> 0 071 445 | $\begin{array}{\|lll\|} \hline & 5 & 381 \\ \hline & 125 \\ 5 & 318 & 214 \\ 5 & 5 & 352 \\ \hline \end{array}$ | $\begin{array}{r} 240506 \\ 229954 \\ 225313 \\ \hline \end{array}$ |  |
| $95 \left\lvert\, \begin{aligned} & \text { Kedar Kante, . . . . . . . . . } \end{aligned}\right.$ | $\begin{array}{lll} 77 & 20 & 53 \\ 30 & 25 & 32 \end{array}$ | $\begin{array}{lll} 77 & 20 & 51 \\ 30 & 25 & 30 \\ 72 & 13 & 40 \\ \hline \end{array}$ | $\begin{array}{lll} 9 & 989 & 324 \\ 9 & 704 & 502 \\ 0 & 021 & 236 \end{array}$ | $\|$5 363 346 <br> 5 078 521 <br> 5 352 786 | 230859 <br> 119819 <br> 225319 |  |
|  | $\begin{array}{llll}81 & 21 & 08 \\ 30 & 56 & 59\end{array}$ | $\begin{array}{lll} 81 & 21 & 06 \\ 30 & 56 & 57 \\ 67 & 41 & 58 \\ \hline \end{array}$ | $\left\lvert\, \begin{array}{cccc}9 & 995 \\ 0 & 711 & 194 \\ 0 & 033 & 762\end{array}\right.$ | $\left\|\begin{array}{lll} 5 & 381 & 582 \\ 5 & 097 & 745 \\ 5 & 359 & 786 \end{array}\right\|$ | $\begin{aligned} & 240759 \\ & 125940 \\ & 225313 \\ & \hline \end{aligned}$ |  |
|  | $\begin{array}{llll}77 & 46 & 43 \\ 98 & 18 & 58\end{array}$ | 77 46 41 <br> 28 18 56 <br> 73 54 24 | \|llll| $\begin{array}{llll}9 & 990 \\ 9 & 676 & 043 \\ 0 & 017 & 362\end{array}$ | $\left\|\begin{array}{llll}5 & 360 & 191 \\ 5 & 046 & 226 \\ 5 & 352 & 786\end{array}\right\|$ | 229188 <br> 111231 <br> 225313 | $1{ }^{1 / 3} 3^{\circ}$ |


| No. | Names of Stations. | Observed Angles Reduced to Centre. | Angles for Calculation. | Logerithmic Sines. | Logarilhms of Sides oppositc. | Sides in Feet. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 98 | Kedar fíconta, . . . . . . . . . <br> Surkunda, . . . . . . . . . . . <br> H. middle peak, ...... . | $\left\lvert\, \begin{array}{llll}0 \\ 95 & 51 & 1 & 18 \\ 24 & 31 & 49\end{array}\right.$ | $\left\|\begin{array}{cccc}0 & 5 & 1 \\ 5 & 51 & 16 \\ 24 & 31 & 47 \\ 59 & 36 & 56\end{array}\right\|$ | $\begin{array}{llll}9 & 997 & 729 \\ 9 & 618 & 221 \\ 0 & 064 & 165\end{array}$ | $\left\lvert\, \begin{array}{llll}5 & 414 & 680 \\ 5 & 035 & 172 \\ 5 & 359 & 786\end{array}\right.$ | $\begin{array}{rr} 259 & 824 \\ 108 & 436 \\ 225 & 313 \\ \hline \end{array}$ |  |
| 99 | Keda: Kanta, Surkanda, H. left peak, | $\begin{array}{lll}96 & 26 & 08 \\ 24 & 04 & 42\end{array}$ | $\begin{array}{lll} 96 & 96 & 06 \\ 24 & 04 & 40 \\ 59 & 29 & 13 \\ \hline \end{array}$ | $\begin{array}{llll} \hline 9 & 907 & 255 \\ 9 & 610 & 635 \\ 0 & 064 & 738 \end{array}$ | $\left\|\begin{array}{rrrr}5 & 414 & 779 \\ 5 & 028 & 159 \\ 5 & 352 & 786\end{array}\right\|$ | $\begin{aligned} & 259884 \\ & 106699 \\ & 225313 \\ & \hline \end{aligned}$ |  |
| 100 | Kedar Kanta,.......... Surkanda, . . . . . . . . . . <br> L. No. 40, | $\|$134 09 29 <br> 14 54 14 | $\left\lvert\, \begin{array}{rrr} 134 & 09 & 28 \\ 14 & 54 & 13 \\ 30 & 56 & 20 \\ \hline \end{array}\right.$ | 9 855 776 <br> 9 410 260 <br> 0 988 933 | $\left\|\begin{array}{llll}5 & 497 & 495 \\ 5 & 051 & 979 \\ 5 & 352 & 786\end{array}\right\|$ | $\begin{aligned} & 314409 \\ & 112714 \\ & 225 \quad 313 \end{aligned}$ |  |
| 101 | Kedar Kanta, ......... Surkanda,. . . . . . . . . . d. No. 1, (No. 39), | $\begin{array}{rrr}127 & 15 & 16 \\ 16 & 36 & 10\end{array}$ | $\begin{array}{rrr} 127 & 15 & 15 \\ 16 & 36 & 09 \\ 36 & 08 & 37 \\ \hline \end{array}$ | 9 900 890 <br> 9 455 956 <br> 0 229 287 | $\left\lvert\, \begin{array}{lll} 5 & 482 & 963 \\ 5 & 038 & 029 \\ 5 & 352 & 786 \end{array}\right.$ | $\begin{array}{ll} 304 & 063 \\ 109 & 151 \\ 225 & 313 \\ \hline \end{array}$ |  |
| 109 | Kedar Kanta, Bairúl, The Cone | 1492028 | $\left\lvert\, \begin{array}{rrr}149 & 20 & 28 \\ 13 & 22 & 04 \\ 17 & 17 & 28\end{array}\right.$ | 9 707 507 <br> 9 363 989 <br> 0 526 915 | $\left\|\begin{array}{llll}5 & 479 & 032 \\ 5 & 135 & 514 \\ 5 & 244 & 610\end{array}\right\|$ | $\begin{array}{ll} 301 & 323 . \\ 136 & 620 \\ 175 & 635 \end{array}$ |  |
| 103 | Kedar Kaita, ......... Surkunda. ............. No. 46, (the Needle), | $148 \quad 3736$ | $\left\|\begin{array}{rrr} 148 & 37 & 36 \\ 10 & 53 & 22 \\ 20 & 29 & 02 \end{array}\right\|$ | $\begin{array}{lll\|} 9 & 716 & 556 \\ 9 & 276 & 265 \\ 0 & 456 & 002 \\ \hline \end{array}$ | $\left\|\begin{array}{llll}4 & 474 & 655 \\ 5 & 085 & 053 \\ 5 & 352 & 786\end{array}\right\|$ | $\begin{array}{ll} 335 & 232 \\ 121 & 634 \\ 225 & 313 \end{array}$ |  |
| 104 | $\left\lvert\, \begin{aligned} & \text { Kedar Kauta, . . . . . . . . } \\ & \text { Chandpir, . . . . . . } \\ & \text { No. 46, (the Needle), }\end{aligned}\right.$ |  | $\left\|\begin{array}{rrr}147 & 21 & 25 \\ 19 & 19 & 44 \\ 20 & 18 & 51\end{array}\right\|$ | $\left\|\begin{array}{lll}9 & 731 & 914 \\ 9 & 329 & 444 \\ 0 & 459 & 460\end{array}\right\|$ | $\left\|\begin{array}{lll}4 & 511 & 930 \\ 5 & 085 & 600 \\ 5 & 290 & 696\end{array}\right\|$ | 307 <br> 121 <br> 1989 <br> 198 |  |
| 105 | Surkanda, <br> Black E. <br> Chandra Budani, . . . . . . | $\begin{array}{lll} 88 & 44 & 37 \\ 66 & 10 & 56 \end{array}$ | $\left\|\begin{array}{lll}88 & 44 & 35 \\ 25 & 04 & 30 \\ 66 & 10 & 54\end{array}\right\|$ | 9 999 895 <br> 9 627 170 <br> 0 038 660 | $\left\lvert\, \begin{array}{lll}5 & 419 & 993 \\ 5 & 047 & 268 \\ 5 & 381 & 438\end{array}\right.$ | 263 023 <br> 111 499 <br> 940 679 |  |
| 106 | Surkanda, . . . . ....... <br> C................... <br> \|Chendra Badeni, ...... | $\begin{array}{r} 69 \quad 36 \quad 17 \\ 89 \quad 46 \quad 43 \\ \hline \end{array}$ | $\left.\begin{array}{lll}62 & 36 & 15 \\ 27 & 37 & 03 \\ 89 & 46 & 41\end{array} \right\rvert\,$ | $\left\|\begin{array}{lll}9 & 248 & 338 \\ 9 & 660 & 119 \\ 0 & 000 & 083\end{array}\right\|$ | $\left\|\begin{array}{llll}5 & 329 & 657 \\ 5 & 047 & 431 \\ 5 & 381 & 236\end{array}\right\|$ | $\begin{array}{ll} 213 & 697 \\ 111 & 540 \\ 240 & 567 \end{array}$ | 1. 1 |


| No. | Names of Sutions. | $\left\lvert\, \begin{gathered} \text { Observed } \\ \text { Angles Re } \\ \text { ducent } \\ \text { dentre. } \end{gathered}\right.$ | Angles for <br> Calculatio |  | $\begin{gathered} \text { Lagarininms } \\ \text { of sides op } \\ \text { pposile. } \end{gathered}$ | $\begin{aligned} & \text { Sides in } \\ & \text { Feet. } \end{aligned}$ | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 107 |  | $\left\lvert\, \begin{array}{ccc} 0 & 0 & 11 \\ 50 & y_{3}^{\prime} & 19 \\ 107 & 29 & 43 \end{array}\right.$ |  |  |  | $\begin{aligned} & 2981838 \\ & 2827828 \\ & 111488^{2} \end{aligned}$ |  |
|  |  | $\left\|\begin{array}{rl} 47 & 31 \\ 111 & 36 \\ 108 & 08 \end{array}\right\|$ |  | $\left\|\begin{array}{ccc} 9 & 867 & 752 \\ 9 & 968 \\ 0 & 488 & 348 \end{array}\right\|$ | $\begin{aligned} & 2 \\ & \left.\begin{array}{l} 5 \\ 4 \end{array}\right) 5118 \\ & \hline \\ & \hline \end{aligned}$ |  |  |
|  | $\qquad$ | 445012 <br> 141129 | $\left[\begin{array}{llll} 20 & 58 & 27 \\ 44 & 50 & 11 \\ 114 & 11 & 21 \end{array}\right]$ |  | $\begin{array}{\|l\|l\|} \hline 4753.362 \\ \hline & 5.047 \\ \hline & 1595 \\ \hline & 159 \\ \hline \end{array}$ | $\begin{array}{r} 56671 \\ 111634 \\ 144425 \end{array}$ |  |
|  |  | 725948 <br> 843630 | $\left\|\begin{array}{lll} 79: 9 & 47 \\ 29 & 23 \\ 81 & 43 \\ 81 & 38 & 29 \end{array}\right\|$ | $\left\lvert\, \begin{array}{cccc} 9 & 980 & 58 \\ 9 & 58 & 58 \\ 0 & 50 & 0 & 9 \\ \hline \end{array}\right.$ | $\begin{array}{\|ccc\|} \hline & 5 & 153 \\ \hline & 295 \\ \hline & 753 \\ \hline & 7578 \\ \hline & 178 \\ \hline \end{array}$ | $\begin{array}{r} 142330 \\ 56726 \\ 148177 \\ \hline \end{array}$ | The distance from which this triangle is calculated is taken frum the 51 . |
|  |  | 755344 812610 | $\left.\begin{array}{llll} 75 & 53 & 41 \\ 81 & 26 & 10 \\ 22 & 40 & 06 \end{array} \right\rvert\,$ |  |  | $\begin{array}{r} 149681 \\ 145476 \\ 56698 \\ \hline \end{array}$ | Mean of 109 \& 110 . |
|  |  | 75 5 <br> 82  <br> 88  <br> 18 40 | $\left.\begin{array}{\|lll\|} 75 & 05 & 20 \\ 82 & 12 & 40 \\ 29 & 42 & 00 \end{array} \right\rvert\,$ | $\left\|\begin{array}{lll} 9 & 985 & 194 \\ 9 & 995 \\ \hline & 995 & 975 \end{array}\right\|$ |  | $\begin{array}{r} 141971 \\ 145566 \\ 56698 \\ \hline \end{array}$ |  |
|  | $\begin{array}{\|l\|} \hline \text { Whartri fort, ........... } \\ \text { Shungut poak, } \\ \text { c. hither range, ........ } \\ \hline \end{array}$ |  | $\begin{aligned} & 742011 \\ & 8324.00 \\ & 29 \\ & \hline 24 \\ & \hline \end{aligned}$ | $\begin{aligned} & 9993567 \\ & 9 \\ & 9997 \\ & 0 \\ & 0 \end{aligned}$ |  | $\begin{aligned} & 144099 \\ & 148 \\ & 5696 \\ & 5699 \end{aligned}$ |  |
| $114$ | $\qquad$ | 7924 <br> 86 <br> 86 <br> 1510 <br> 10 |  | $\left\|\begin{array}{c\|c\|c\|} 9 & 979 & 200 \\ 9 & 999 \\ 0 & 930 \\ 0 & 070 & 038 \end{array}\right\|$ | $\begin{array}{\|llll}  \\ 0 & 5 & 171 & 806 \\ \hline & 191 & 676 \\ \hline & 753 & 668 \\ \hline \end{array}$ | $\begin{array}{r} 148597 \\ 155480 \\ 56698 \\ \hline \end{array}$ |  |
|  |  |  | $\begin{array}{r} 713010 \\ 81 \\ 85050 \\ 81 \\ 21 \\ \hline 3 \pm 25 \\ \hline \end{array}$ | $\left\|\begin{array}{ccc} 9 & 976 \\ 9 & 9964 \\ 0 & 999 & 374 \\ 0 & 434 & 511 \end{array}\right\|$ | $\left.\begin{array}{\|l\|lll\|} \hline & 5 & 165 & 043 \\ 4 & 5 & 187 & 463 \\ \hline & 4 & 753 & 568 \end{array} \right\rvert\,$ | $\begin{aligned} & 146232 \\ & 153975 \\ & 153 \\ & 56.698 \\ & \hline \end{aligned}$ |  |


| T.Vo. | -Names of Statoins. | Observerd Anglcs Re- duced to Centre. | Angles for Calcalation. | Logarithinic Sines. | Logârithms of Sides opposite. | Sides in Feet. | Remurks. . |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 116 |  | 69 89 89 20 | 0 3  <br> 69 31  <br> 89 20 15 <br> 21 06 15 | 9 971 753 <br> 9 999  <br> 0 443 971 | $\left\|\begin{array}{ccc} 5 & 168 & 941 \\ 5 & 197 & 159 \\ 4 & 753 & 568 \end{array}\right\|$ | $\begin{array}{r} 147550 \\ 157455 \\ 56698 \\ \hline \end{array}$ |  |
| 117 | Whartic fort, ......... Tüngrú peak, ........ h.. | $\begin{array}{llll}67 & 45 & 30 \\ 91 & 53 & 50\end{array}$ | $\begin{array}{lll} 67 & 45 & 30 \\ 91 & 53 & 50 \\ 20 & 20 & 40 \\ \hline \end{array}$ | $\begin{array}{lll} 9 & 966 & 421 \\ 9 & 999 & 769 \\ 0 & 458 & 841 \end{array}$ | $\begin{array}{llll} 5 & 178 & 830 \\ 5 & 212 & 171 \\ 4 & 753 & 568 \end{array}$ | $\begin{array}{r} 150949 \\ 162993 \\ 56698 \\ \hline \end{array}$ | .0) $13^{23}$ |
| 118 | Whartủ fort, . . . . . . . <br> Tüngrrí peals, <br> j . . . | $\begin{array}{llll}66 & 3411 \\ 95 & 11 \\ & 01 & 25\end{array}$ | $\begin{array}{llll} 66 & 34 & 11 \\ 95 & 01 & 25 \\ 18 & 24 & 24 \end{array}$ | $\begin{array}{llll} 0 & 962 & 697 \\ 9 & 998 & 328 \\ 0 & 500 & 542 \end{array}$ | $\begin{array}{lll} 5 & 216 & 737 \\ 5 & 252 & 438 \\ 4 & 753 & 568 \\ \hline \end{array}$ | $\begin{array}{r} 164717 \\ -178705 \\ 56698 \end{array}$ | $1$ |
| 119 | Whartiu fort, . . . .... <br> Túngrúc peak,. <br> Western F. (No. 2), | $\begin{array}{rrrr}112 & 42 & 37 \\ 53 & 14 & 27\end{array}$ | $\left(\left.\begin{array}{rll} 112 & 42 & 37 \\ 53 & 14 & 27 \\ 14 & 02 & 56 \end{array} \right\rvert\,\right.$ | $\begin{aligned} & 996495 \\ & 9 \\ & 9 \\ & 0 \\ & \hline \end{aligned} \mathbf{6 1 4} 785$ | $\begin{array}{lll} 5 & 333 & 37 \\ 5 & 272 & 14 \\ 4 & 753 & 57 \end{array}$ | $\begin{array}{r} 215460 \\ 187130 \\ 56698 \end{array}$ | 43 |
| 130 | Whartí fort, .... Tüngrí peak, No. 8 , | 125.5707 402024 | $\begin{array}{r} 125 \\ 40 \\ 40 \\ 20 \end{array} 071$ | $\begin{array}{lll\|} 9 & 908 & 22 \\ 9 & 811 & 12 \\ 0 & 625 & 29 \end{array}$ | $\begin{array}{llll} 5 & 2887 & 08 \\ 5 & 189 & 98 \\ 4 & 753 & 57 \\ \hline \end{array}$ | $\begin{array}{r} 193680 \\ 154875 \\ 56698 \\ \hline \end{array}$ |  |
| 121 | Whartú fort, .... <br> Tüngríupeak, . . . . <br> Black peak, No. 9 | $\begin{array}{rrr} 127 & 37 & 56 \\ 39 & 08 & 57 \end{array}$ | $\begin{array}{rrr} 127 & 36 \\ 39 & 08 & 57 \\ 13 & 13 & 07 \\ \hline \end{array}$ | $\begin{array}{ll} 9 & 898 \quad 69 \\ 9 & 800 \\ 0 & 640 \\ 0 \end{array}$ | $\begin{array}{lll} 5 & 293 & 06 \\ 5 & 194 & 64 \\ 4 & 753 & 57 \end{array}$ | $\begin{array}{r} 196370 \\ 156550 \\ 56698 \end{array}$ |  |

Table of Differences of Level of the Principal Stations and Peaks in the Gerhwal Survey.

| No. | Names of Stations. | $\left\lvert\, \begin{gathered} \text { Observed Ete- } \\ \text { vation and } \\ \text { Depression. } \end{gathered}\right.$ | $\begin{aligned} & \text { i'angent } \\ & \text { of } \\ & \text { Mean } 1 . \end{aligned}$ | Distance in Feet. | Logarithm. | $\begin{gathered} \text { Log. Diff. } \\ \text { of } \\ \text { Level. } \end{gathered}$ | $\left\|\begin{array}{c} \text { Diffri of } \\ \text { Level in } \\ \text { Feet. } \end{array}\right\|$ | Arc of Distance. | Refraction. | Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Chiér, $\ldots .$. <br> Belville, $\ldots$. |  | 8,519 59 | 224443 | 5,511 14 | 4,030 66 | 10731 | 5332 | $5^{\prime} 07,5$ | $\frac{1}{10,44}$ |
| 2 | Bairát, $\ldots$ <br> Belville, $\ldots$ | $\begin{array}{llll} 1 & 44 & 27 & \mathrm{D} \\ 1 & 09 & 17 & \mathrm{E} \end{array}$ | 3,402 67 | 259103 | 5,413 47 | 3,816 14 | 6548 | $4243 \frac{1}{2}$ | 3 46,8 | $\frac{1}{11,29}$ |
| 3 | Bhalirag, Belville, | $\begin{array}{llll} 1 & 52 & 00 & \mathrm{D} \\ 1 & 20,42 & \mathbf{E} \end{array}$ | 8,44769 | 298953 | 5,359 75 | 3,807 44 | 6418,6 | 3743 | 312,5 | $\frac{1}{11,73}$ |
| 4 | Surkandos, Belvible, | $\begin{array}{llll} 1 & 59 & 14 & \mathrm{D} \\ 1 & 20 & 44 & \mathrm{E} \end{array}$ | 8,463 78 | 286183 | 5,456 64 | 3,920 42 | 8325,6 | 4703.9 | 417 | $\frac{1}{10,99}$ |
| 5 | Chandpur, Belville, ..... | $\begin{array}{llll} 1 & 53 & 08 & \mathrm{D} \\ 1 & 15 & 40 & \mathrm{E} \end{array}$ | 8,438 81 | 274914 | 5,439 20 | 3,878 01 | 7551,1 | $4591 \cdot$ | 325,8 | $\frac{1}{11,51}$ |
| 6 | $\begin{array}{ll}\text { Surkanda, } & \ldots . \\ \text { Bhadráj, } & \ldots .\end{array}$ | $\begin{array}{llll} 1 & 03 & 45 & \mathrm{D} \\ 0 & 48 & 11 & \mathrm{E} \end{array}$ | 8,211 69 | 108854 | 5,036 81 | 3,248 53 | 1779,3 | $17 \quad 52 \cdot 6$ | 100,6 | $\frac{1}{15.41}$ |
| 7 | $\begin{array}{ll}\text { Surkandla, } & \ldots . \\ \text { Bairát, } & \ldots\end{array}$ | $\begin{array}{lllll}0 & 54 & 15 & \mathrm{D} \\ 0 & 35 & 51 & \mathrm{E}\end{array}$ | 8,117 45 | 127502 | 5,105 52 | 3,222 97 | 1671,0 | $20 \quad 575$ | 116,5 | $\frac{1}{16,44}$ |
| 8 | $\begin{array}{ll}\text { Surkgnda, } & \ldots . . \\ \text { Chandpur, } & \ldots . .\end{array}$ | $\begin{array}{llll} 0 & 26 & 37 & \mathrm{D} \\ 0 & 05 & 15.5 \mathrm{D} \end{array}$ | 7,492 43 | $\underline{2} 25606$ | 5,353 35 | 2,845 78 | 701 | 37 04.9 | 236 | $\frac{1}{14,26}$ |
| 9 | Uchalárí́, <br> Surkanda, .... | $\begin{array}{llll} 1 & 39 & 42 & \mathrm{D} \\ 1 & 10 & 00 & \mathrm{E} \end{array}$ | 8,392 47 | 204752 | 5,311 23 | 3,702 70 | 5054,8 | $3340 \cdot 9$ | 200 | $\frac{1}{16,8 t}$ |
| 10 | Surkanda, .... Chundir Budunce, | $\begin{array}{llll} 0 & 57 & 45 & \text { D } \\ 0 & 41 & 31 \cdot 4 \mathrm{E} \end{array}$ | 8,158 55 | 111508 | .5,047 31 | 3,206 86 | 1610,1 | 18 19'2 | 1 02,8 | $\frac{1}{17,50}$ |
| 11 | Surkanda, .... <br> Chandee Pahar, | $\begin{array}{llll} 2 & 36 & 16 & \mathrm{D} \\ 2 & 10 & 55 & \mathrm{E} \end{array}$ | 8,621 13 | 179065 | 5,253 03 | 3,874 16 | 7484,4 | 2932 | 205,5 | $\frac{1}{14,12}$ |
| 12 | $\begin{array}{ll} \text { Chúr } & \ldots \\ \text { Bairut, } & \cdots \end{array}$ | $\cdot\left\|\begin{array}{llll} 1 & 35 & 17 & 5 \mathrm{D} \\ 1 & 09 & 54 & \mathrm{Fi} \end{array}\right\|$ | 8,380 79 | 170256 | 5,231 18 | 3,611 97 | 4 092,3 | $2800 \cdot 1$ | 118,3 | $\frac{1}{21,46}$ |

Table of Differences of Level, \&c.-Continued.

| No. | Names of Stations. | $\left\|\begin{array}{c} \text { Oserved Ele- } \\ \text { vations and } \\ \text { Depression. } \end{array}\right\|$ | $\stackrel{o f}{\text { Méan } 1 .}$ | Distance in Feet. | Logarithm. | $\begin{gathered} \text { Log. Diff. } \\ \text { of } \\ \text { Level. } \end{gathered}$ | $\left\|\begin{array}{cc} \text { Diffr, } & \text { of } \\ \text { Level } & \text { in } \\ \text { Feet. } \end{array}\right\|$ | Are of Distance. | $\left\|\begin{array}{c} \text { Refrues } \\ \text { tion. } \end{array}\right\|$ | Ratio. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | Chandpur, Bairár, | $\begin{aligned} & 0^{0} 40^{\prime} 35^{\prime \prime} 5 \mathrm{D} \\ & 0 \\ & 0 \end{aligned} 2607 \cdot 5 \mathrm{E}$ | 7,986 94 | 981695 | 4,991 97 | 2,9:8 91 | 952,6 | $16^{\circ} 08^{\prime \prime}$ | $0^{\prime} 50^{\prime \prime}$ | $\frac{1}{19,36}$ |
| 14 | Bairár. <br> Bhadráj, | $\begin{array}{llll} 0 & 10 & 50 & \mathrm{D} \\ 0 & 05 & 10 & \mathrm{E} \end{array}$ | 7,366 8 | 38380 | 4,584 8 | 1,951 6 | 89,5 | 6204 | 020,2 | $\frac{1}{18,84}$ |
| 15 | Kedarkanta, Bairát, | $\begin{array}{llll}1 & 52 & 13 & \mathrm{D} \\ 1 & 27 & 03 & \mathrm{C}\end{array}$ | 8,462 25 | 175565 | 5,244 44 | 3,706 69 | 5089,7 | 28564 | 153,2 | $\frac{1}{15,31}$ |
| 16 | $\left\lvert\, \begin{array}{ll} \text { Uchalérúu, } & \ldots \\ \text { Bairát, } & \ldots \end{array}\right.$ | $\begin{array}{llll} 1 & 54 & 00 & \text { D } \\ 1 & 21 & 29 & \mathrm{E} \end{array}$ | 8,453 92 | 234888 | 5,370 86 | 3,824 78 | 6 680, | 39197 | $3.24,7$ | $\frac{1}{11,53}$ |
| 17 | Chandpur, Bhadráj, | $\begin{array}{llll} 0 & 38 & 34 & \mathrm{D} \\ 0 & 20 & 23 & \mathrm{E} \end{array}$ | 7,933 18 | 123944 | 5,093 22 | 3,026 40 | 1 062,7 | 20236 | 106,3 | $\frac{1}{18,45}$ |
| 18 | Bhadr Jytulc, | $\begin{array}{llll} 0 & 59 & 30 & \mathrm{D} \\ 0 & 32 & 05 & \mathbf{E} \end{array}$ | 8,124 54 | 199567 | 5,300 09 | 3,424 63 | 2658,5 | 32.464 | 240,7 | $\frac{1}{12,24}$ |
| 19 |  | $\begin{array}{llll} 2 & 30 & 41 & \mathrm{D} \\ 2 & 20 & 12 & \mathrm{E} \end{array}$ | 8,626 30 | 73986 | 4,869 15 | 3,495 45 | 3129,3 | 12105 | 050,8 | $\frac{1}{14,38}$ |
| 20 | Chitŕr,  <br> Whartú, $\ldots$ | $\begin{array}{llll} 0 & 34 & 49 & \mathrm{D} \\ 0 & 13 & 32 & \mathrm{E} \end{array}$ | 7,817 10 | 144458 | 5,159 74 | 3,006 84 | 1015,9 | 23498 | 116,3 | $\frac{1}{13,74}$ |
| 21 | $\begin{array}{ll} \text { Chur } \\ \text { Jytuk, } & \text { … } \end{array}$ | $\begin{array}{llll} 3 & 52 & 30 & D \\ 3 & 37 & 55 & E \end{array}$ | 8,816 95 | 104141 | 5,017 69 | 3,834 57 | 6 832,4 | 17098 | 117,5 | $\frac{1}{18,93}$ |
| 22 | Whartú, Tǐngrú, | $\begin{array}{llll} 0 & 39 & 17 & \mathrm{D} \\ 0 & 30 & 24 & \mathrm{E} \end{array}$ | 8,005 79 | 56699 | 4,750 53 | 2,756 32 | 570,6 | 916 | 011,5 | $\frac{1}{18.4}$ |

Snouy Peaks-wilh Data.

| No. | Nomes of Siations. | Observed Elevation. | Arc of Distance. | Corrected <br> Elevation. | T'angent. | Distance in Feet. | $\begin{aligned} & \text { Loga- } \\ & \text { rithm. } \end{aligned}$ | Log. Diff. of Level. | Diff. of Level in Feet. | Height above the Sea. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Uchalarit, | $5^{\circ} 402{ }^{\prime}$ | 12 $39^{\prime \prime}$ | $\left[\begin{array}{llll} \\ 5 & 45^{\prime} & 56\end{array}\right.$ | 900419 | 76,673 | 4.884 64 | 388883 | 7,742 ${ }^{\text {c }}$ | 21,884 |
|  | Ditto, | 50353 | 1058 | 50841 | 895441 | no, 481 | 4829.70 | 377711 | 5,987 | 20,129 |
|  | Ditio, | 51403 | 1398 | 52002 | 897018 | 81,731 | 491239 | 388257 | 7,631 | 21,773 |
|  | Ditto, $Q$ | 32915 | 40,14 | 33540 | 879808 | 88,985 | 494932 | 374740 | 5,590 | 19,732 |
|  | Ditto, | 13297 | 1528 | 13913 | 846043 | 94,048 | 497335 | 343378 | 2,715 | 16,85\% |
|  | Ditto, great | 93455 | $0625 \cdot 6$ | 93744 | 922957 | 39,037 | 459148 | 382105 | 6,623 | 20,765 |
|  | Redar Ranta, | 31943 | 1834.8 | 32751 | 878200 | 112,714 | 505198 | 383398 | 6,823 | 19,352 |
|  | Ditto, No. 39, | 32547 | 1758 | 33339.6 | 879397 | 109,151 | 503803 | 383200 | 6,792 | 19,321 |
|  | Ditto, great | 34650 | 1940 | 35526 | 883627 | 119,819 | 507852 | 391479 | 8,218 | 20,747. |
|  | Kedar Kanta, $H$. left p | 40403 | 1731.5 | 41143 | 886541 | 106,699 | 502816 | 389357 | 7,827 | 20,356 |
|  | Ditto, H. middle peal, | 40403 | $1748 \cdot 6$ | 41231 | 886679 | 108,436 | 503517 | 390196 | 7,979 | 20,508 |

\$nowoy Pedks-xoith Data- - Coatinued.

| No | Names of Stations. | Observed Elevation. | A.c of Distancte. | Corrected Esevution. | Tangent. | Distance in Feet. | Loga. rithm. | Log. Diff. of Level. | Dij: of Level in Feet. | $\begin{gathered} \text { Hcight } \\ \text { above the } \\ \text { Sea. } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | Kedar Kanta, C. ..... | 20612 |  | ${ }^{0} 28{ }^{2} 113$ | 861830 | 292,954 | 534591 | 396651 | 9,258 | 21,787 |
|  | Ditto, the Conte, | 32330 | 2828 | 3. 3320 | 893934 | 136,629 | 513551 | 392885 | 8,489 | 21,018 |
|  | Surkanda, G\% | 20923 | 2106.5 .9 | 22757 | 863384 | 956,427 | 540890 | 404871 | $\begin{array}{r}11,033 \\ \hline\end{array}$ | 20,141 |
|  | Ditto, Fr. | 2.3436 | 41590 | 25255 | 3701.93 | 254,512 | 540576 | 410769 | 12,814 | 21,925 |
|  | Ditto, Q | 22454 | $37 \cdot 27 \cdot 7$ | 24113 | S 67168 | 297,729 | ${ }_{5}^{5} 35742$ | 402910 | 10,603 | 19,801 |
|  | Dillo, A. No. 1, | 11030 | 117104 | 14416 | \$ 48200 | 470,023 | 567212 | 415412 | 14,260 | 23,371 |
|  | Ditto, A. Ne. 2, | 10862 | $12655 \cdot 3$ | 1364 | 849313 | 529,384 | 5 723 77 | 421690 | 16,478 | 95,580 |
|  | Ditio, MUira, | 22828 | 104523. | 24819 | $8690: 20$ | 975,933 | 544080 | 413100 | 13,52! | -92,638 |
| 20 | Surkanda, B. middle peak. | 20143 | 54 | 295.44 | 362754 | 394,068 | 552583 | 415137 | 14,170 | 23,981 |
|  | Ditto, P. | 10035 | 12208 | 13631 | 844344 | 500,175 | 5 69312 | 414756 | 14,046 | 23,157 |
|  | Kedar Kanta, No. 46, | 25027 | 02004 | 259.14 | 871753 | 121,712 | 508533 | 380286 | 6,351 | 18,88 |

Snowy Peaks-with Data, Continued.

| No. | Names of Stations. | Observed Elcvation. | Arc of Distance. | Corrected Elevation. | Tengent. | Distance in Fet. | $\log 9$ rithus. | $\begin{aligned} & \text { Log. Dif } \\ & \text { of Level, } \end{aligned}$ | Diff. of Level în Feet. | $\begin{aligned} & \text { Height } \\ & \text { above the } \end{aligned}$ sea. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | Kedar Kanta, Kot Gerhpt. | 0 | $0_{0}^{0} \begin{array}{lll} 16 & 43^{18} \end{array}$ | $\left\lvert\, \begin{array}{ccc} 0 \\ 0 & 56 & 23^{\prime \prime} \end{array}\right.$ | 831292 | 283,672 | 545282 | 3 66774 | 4,653 | 17,180 |
|  | Chair Raldeng, | 105 告 | O 58.49 | 11.3154 | 8, 427.14 | 369,580 | 556000 | 308774 | 9,722 | 21,251 |
|  | Whartú, pyramidal peals; | 22443 | 02421 | 235.32 | 8,655 38 | 148,180 | 517078 | 382610 | 6,701 | 17,214 |
|  | Surkanda, | 22711 | 08620 | 24730 | 868908 | 288,788 | 54510 | 413908 | 13,775 | 22,894 |
|  | Chandra Budaní, | 33516 | 03734 | 3 51,42 | 882931 | 228, 183 | 535823 | 418759 | 15,403 | 22,912 |
|  | Surkanda, U | 20443 | 04749 | 22538 | 868733 | 290,900 | 5.4637 | 409107 | 12,333 | 21,452 |
|  | Whartú, weste | 21549 | 0 3051 | 22819 | 863810 | 187,130 | 5972 | 391024 | 8,133 | $\begin{array}{r} 18.646 \\ -11 \\ \hline \end{array}$ |
| 30 | Ditto, black peak | 15005 | O 25 51 | 2 al 24 | 854812 | 156,550 | 510164 | 374276 | 5,530 | $\begin{array}{r}16,049 \\ -\quad 12 \\ \hline\end{array}$ |
|  | Ditto, Kot Gerh peak, | 21431 | 02558 | 22553 | 862789 | 157,500 | 5 197.27 | 382526 | 6,687 | 17,200 |
|  | Tüngrú, western $F$. | 20300 | 03533 | 121834 | 860563 | 215,460 | 5. 33387 | 393903 | 8,690 | 18,632 |
|  | Kedar Kanta, black E. ... | 34303 | 02434 | 35203 | 889996 | 125,240 | 50977 | 392770 | 8,460 | 20,995 |

Snowy Peaks-zith Data.-Continued.

| No. | Names of Stations. | Observed Elevation. | Arc of Distance. | Corrected Elevation. | Tangent. | Distance in Feet. | Loga . jithns. | $\left\|\begin{array}{ll} \text { Log. } & \text { Din. } \\ \text { of Level. } \end{array}\right\|$ | Diff of Level in Fect. | above the <br> Séa. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35 | Kedar Kunta, low E | $3^{\circ} 41^{\prime} 23^{\prime \prime}$ | $0^{\circ} 18^{\prime} 16^{\prime \prime}$ | $\left\lvert\, \begin{array}{ll}0 \\ 3 & 49 \\ 3 & 2 \\ \end{array}\right.$ | 8.82492 | 111,231 | 504623 | 387114 | 7,433 | 19,96\% |
|  | Surkanda, H. right peak | 21121 | 04258 | 23009 | 864057 | 260,745 | 541621 | 405678 | 1, 11,397 | 0,508 |
|  | Ditto, H. midle peak, | 20943 | 0 42.5 | 128 27 | 863557 | 259,8 | 541478 | 405035 | 11,2 | 20,341 |
|  | Uchal | 33256 | $\|$0.13 28.5 | 3 3850 | 880443 | 82,021 | 491392 | 371835 | 5,228 | 10,370, |
|  | Ditto, F.-C. | 45730 | 0:13 51 | 50324 | 894713 | 84,365 | 492620 | 387333 | 7,470, | 21,612 |

Trie preceding determinations may be so aranged as to tram from them a very satisfactory mean value for the height of any one of the mountain stations (the Cheri) above that in the plains, Belville: those that are nearest to each other, being supposed most correct as free from the uncer* tainty of refraction, and having larger angles of elevation, and depression, answering to equal differences of level.

Thus, Bairat is above Bhadraj, ................... $8 \mid 89.8$
Ditto above Bairât, ............................. 973
By direct calculation, , o.os.................. 953
Ifean, 963

Again, Surcarda is above Bhatrajo............... $1,7 \% / 2$
Buivål above ditto, . ......................... 89
Surtanda above Bavat, .................... 1,683
By divect calculation, . ....................... 1,6\%1
Mean, 1,077

Chandpui above Rairảt,
Surkanda above Chandpur, .................. 714 (2Results).

Chúr above Chandpar ..... 3,128
Chtandmui above Bairat, ..... 963.Chutr above Jytelis,6,833.
Jytek below Bhadráj, ..... 2,658:
Bhadráj below Bairát, ..... 89
By direct calculation;
Mean, ..... 4,090
Ciman" above Beluille.
Chandpur above Belville, ..... 7,550
Chïr above Chandpur, ..... 3,128
Bairát' above Bèlville, ..... 6,549
Chúr above Bairát, ..... 4,090

- 10,635

$$
10,639
$$

Bhadráj. above Belville, ..... 6,419
Chúr above Bairát, ..... 4,090.
Bairát above Bhadráj, ..... 89
Surkanda above Belville ..... 8,326
Ditto above Chandpur, ..... 710
Clúŕr above Ditto, ..... 3,128

- ..... 10,744
By direct calculation, ..... 10,731
Mean of 5 values, ..... 10,676

10,678
rais then may be taken as the probable height of the Chutr station above Belville. To which adding* 1013 feet for the height of the latter, above the sea as determined from barometrical calculation, we get finally for the height of the Chur station above the sea 11,689 feet. From this the following mean values may be fixed by applying the several mean differences of level before fomat.
Chir station above the sea,Feet.
Bairát, ..... 7,599
Bhadráj, ..... 7,510
Surkanda, ..... 9,271
Kédar Kánta, ..... 12,689
Uchalárú, ..... 14,302
Jytek, ..... 4,85-1
Chandpur ..... 8,201

The refractions it appears are greater where one of the stations is in the plains.

Thus,

$$
\begin{aligned}
& \text { Belville-Chur give,...... } \frac{1}{10.44} \\
& \text { Buirát,.......... } \frac{1}{11.29} \\
& \text { Surkanda,...... } \frac{1}{10.99} \\
& \text { Bhadráj, ........ } \frac{1}{11.73} \\
& \text { Chandpur, ....... } \frac{1}{11.51} \\
& \text { Nean, } \overline{\frac{1}{11.19}}
\end{aligned}
$$

[^38]Winle for heights varying from 7,000 to 11,000 we have, Surkanda-Bhadráj, . . . ....... $\frac{1}{15 .{ }^{1}}$

Bairát,............. ${ }_{\text {16.प41 }}^{1,1}$
Chandpure,........ $\frac{1}{14.26}$
Uchalárú, ......... $\frac{1}{16.8\}}$
Charidra Badanio,.. $\frac{1}{17.50}$
Chúr-Bairút, ............. $\frac{1}{21.46}$
Chandpur,......... $\frac{1}{14.38}$
Whartú fort,...... $\frac{1}{18.74}$
Bairát-Chandpur,......... $\frac{1}{1936}$
Bhadráj,........... $\frac{1}{18.0 t}$
Kédar Kánta,.... $\frac{1}{15.32^{2}}$
Uchalárú,.......... $\frac{1}{11.53}$
Chandpur-Bhadráj,........... $\frac{1}{18.15}$

Mean, $\frac{1}{16.81}$

Now alhough from the elevations of the snowy peaks being far beyond 14,000 feet, we might safely take a much smaller ratio than $\frac{1}{16}$, yet to be within the mark, we will content ourselves with that quantity. The extreme difference in the coefficent, is $\frac{1}{11}$ to $\frac{1}{21}$ that is nearly as 2 to 1 . Supposing an are of $60^{\prime}$, this will be either 6 or 3 , leaving a doubt of 3 , and this generally on angles of 3 or $\frac{1}{60}$ of the height, that is of 10,000 feet $=170$ feet. And it must be recollected that this is taking not a fair view of the question, but an exceedingly unfavorable one, for it might be safely asserted that in
no case is the refraction in viewing a snowy peak from an elevation of $\%, 000$ feet, so great as $\frac{1}{16}$ of the arc, while the distance also is never $60^{\prime}$.

The following table, contains all the elements of the calculation of the elevations of the snowy peaks. The formula is $H=D$ tang. $\left(E+\frac{1}{2} \delta-\right.$ $\frac{1}{16} \delta$ ) where $\boldsymbol{H}$, means the height, $D$ the distance in feet, $\delta$ the angle subtended between the verticals of the two places, and $E$ the observed altitude. In finding: $\delta$ allowance has been always made for the figure of the earth by using table 3 of the appendix

Accompanying there is given a catalogue of latitudes and longitudes of all the positions that are trigonometrically determined, with the elevations: of as many as have yet been fixed. The formala used is sufficiently explained in the appendix:. It only remains to say; that the latitude of Bel ville has been assumed as that likely to be nearest the truth, being determined from a greater number of observations, and under more favorable circumstances.

The Azimuth of the Chir' station fiom Belville, was determined, by a mumber of double elongations of the pole star, made by both observers, with the circle, to be $3^{\circ} 25^{\prime \prime} 05^{\prime \prime} \mathrm{W}$. of N . Azimuths were also observed from the Chür, from Surkanda, Bairät, Uchalárú and Kédar-Kánta. The several differences of Azimuth being calculated by the formula, and tables given in the appendix, and applied to these, the differences are in no case found to exceed what may be fairly attributable to observation, that is to. say, they never exceed $\frac{i .}{2}$. But as all, except the Ađimuth from Bairát, were

Qbserved with the theodolite and deduced from comparisons with the sun, (a method not capable of the same precision as that of elongations, it was thought more correct to confine ourselves to the original Asimuth from Belville, determined in so much more satisfactory a manner. The others indeed were principally observed as checks, and to be an assurance against the intrusion of any errows, not properly belonging to the subject.


Barometrical Observations to determine the Height of the Stotion near Saharampur, above the level of the Sea.

This important point it is hoped is satisfactorily settled from the eighteen corresponding barometrical observations made at Saháranpúr and: Calcutta, for that express purpose, with correct mountain barometers, in which the level of the mercury in the cistem can always be adjusted. As for want of the verification of the zero of their scales, the observations usually made in Calcutla for meteorological purposes, are not sufficiently correct, to use as correspondents where differences of height are desired: we rather chose, to determine the differences of height of Saloaranpur, and the sea, from thie assumed mean height at which the mercury is supposed by philosophers to stand at the sea level, on an average of tie whole year, but to render that mode of comparison, perfectly correct, it would be necessary, to have the observations, taken during twelve months at Saháranpúr ; therefore, on the arrival of a perfect mountain barometer in Calcutta, an actual cotemporancous comparison was immediately insti-
iuted, with a similar instrument at Saháranpús as noted below. The result, (all corrections made) is that 1013 feet, is the height of $\$$ hárant ur abore the sea. Thus a more correct determination having been obtained, since this part of the paper, went to the press, it is substituted for the former assumed difference of level, and the present list is more accurate, and also contains more places, than the former, which will account for the circumstance, of several of the pages bearing the same number.

Tatitudes, Longitudes and Llcuations, of principal Peaks and Stations in the Survey.
The positions of the stations, whether of the small, or large serics of triangles, are, it is thought
true, (as far as diferences of latitude and longitude are concemed), to a fraction of a second.
None of the snowy peaks can be erroneons to the amount of 2 . But the secordary points, are not
equally true, with those, and having been fixed in various ways, they possess various degrees of
correctness. The maximum error, however camot exceed 6 or 8 , which for geographical purposes
is sufficient. It is to be remarked, that on such points, no others are deperdent, consequently any
errors stop with themselves, and are not transferred to new results, so as to accumulate. As
to the absolute latitudes and longitudes, the former, it is evident, cannot be determined with the
greatest precision with portable instruments, nor all the latter without corresponding observations
at some known Obscrvatory, which we are as yet without. The error of the former, howere:
camot exceed $10^{\prime \prime}$ at the utmost, nor that of the latter 4 or $5^{5}$ equal to $16^{\circ}$ or $20^{\circ}$ of time.

1. Stations of the Large Series of Triangles.

| No. | Stations. | Latitude. | $\left\lvert\, \begin{aligned} & \text { Longitum } \\ & \text { cremumich }\end{aligned}\right.$ | Elevation. | Districl or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Belville | $20^{\circ} 57^{\circ} 10$ | $\left\|\begin{array}{lll} 7 & 31 & 12 \end{array}\right\|$ | $\begin{aligned} & \text { Feet. } \\ & 1013 \end{aligned}$ | Sahárcunpúr, Doab, . | The residence of R. (Frind quer. Esq. Judge and Magis. trate. Tuis is the principal station of the surves where all the most valuable observations, whether on latitude, longitude or Azinuth have been made. is $1 \frac{1}{2}$ miles S. b |

Latitndes, Longitudes and Elevations,-Continued.

TOL. XIV。

Lahiudes, Longitudes and Elevations,-Continued.
Peaks of the Himálya or Snowy Range.

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Langitudes and Elevations,-Continued.

3. Points on the Rivers includiag their Sources, Confluences, and the places where they enter the Plains.

| No. | Stations. | $\text { Latiture. } \left.\begin{gathered} \text { Longituse } \\ \text { from } \\ \text { freenwich. } \end{gathered} \right\rvert\,$ | Elevation. | District or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 66 | Termination of cur route on the great snow bed, Bhagiratti first emerges from the last snow bed about, $\qquad$ Bhaíro Ghati confluence of Bhayirat'hi and Jahnazi rivers,... <br> Nilun on the Juhnivi,.....\} <br> Súkhí, ........... |  | $\left.\begin{array}{c}\text { Feet. } \\ 14600 \\ 13800 \\ \\ 8511 \\ 11197 \\ 8869 \\ 7608\end{array}\right\}$ | Garhisál, <br> Ditto, <br> Chungsa, <br> Garha゙ál, $\qquad$ $\qquad$ $\qquad$ | This is the position of that point, on the snew bed, at which our researches terminated. It is about $1 \frac{\pi}{2}$ mile furiker, than the place, where the stream emerging from the great suow bed or glacier measured 27 feet in width, and was only 18 inches deep at the utmost, as described in the Journal of May 1817. <br> Of these two rivers, the Jáhnavé, contains the greater body of water. <br> A Tartar village, dependent on Chaprang. It is also called Chúngsa, or perhaps this last is the name of the district or ITurgumnah. Chaprang, which is on the Setlej, is said to be 6 day's easy journey and the road good. <br> The Ganges may be here said, to break through the Himalya proper. The River bed was found by Ba. rometer 1261 feet below Sulthi, or above the sea 7608 feet. |

Latitudes, Longitudes and Elevations,---Continued.

| No. | Stations. | Latitude. | $\left\|\begin{array}{c} \text { Longitude } \\ \text { from } \\ \text { Grenwich } \end{array}\right\|$ | Elevation. | District of State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | Tirí, | $\left\|\begin{array}{ccc}0 & 1 & " 1 \\ 30 & 22 & 50\end{array}\right\|$ | $\left[\begin{array}{ccc}0 & 1 & 11 \\ 78 & 28 & 28 \\ \text { Level of } \\ \text { river, }\end{array}\right]$ | $\left\{\begin{array}{c} \text { Feet. } \\ 2398 \\ 2278 \end{array}\right\}$ | Gurhwal, .........\{ | Is the present residence of the Rijó of Garhroal; Srinugar his former capital, being reserved by the Brizish goverament. The Bhagirat'hí here, receives the Bhilling, a considerable stream or river, which has its rise, from the snowy chain. |
|  | Dévaprayága, | 300822 | $\begin{gathered} 7835.48 \\ \text { Level of } \\ \text { river, } \end{gathered}$ | \{ 2266619 | Ditto | The confluence of the Alacananda and Bhagirat'hí. The former is the larger river, in the proportion of $1 \frac{1}{2}$ to 1 ; each of them is crossed by a bridge of ropes, above the contluence. The Alacananda is the boundary of Garhwal, to the eastward. |
|  | Rikithés, | $0600{ }^{7}$ | $\left\|\begin{array}{ccc} 78 & 17 & 07 \\ \text { Level of } \\ \text { river, } \end{array}\right\|$ | $\left\{\begin{array}{l} 1427 \\ 1377 \end{array}\right\}$ | Déhra Dúng, ..... | The Ganges (Bhagirat'hi and Alacananda united), here enters the Déhra Dín atits N. E. angle. Its left bank, continues skirted, by a low range of hills, covered with thick Jungle. <br> The Ganses here enters, the plains of Hindoostan. This |
|  | Harad | 295616 | 780940 | 1024 | vaháranpuir Dúab, | celebrated place, is now for the first ime accurately fixed. Its position has been determined trigonometrically. |
|  | Jumnaútri,...... | 30591878 | 782607 | 10849 |  | The source of the Jumna: Jamnaútri is a place of pilgrimage and remarkable for boiling springs. The temperature of the water where it issues from the rock is $194^{\circ} \cdot 7$ which for thut elevation, is nearly the heat at which water is converted into steam. See Joural of 1817 . |
|  | Confluence of Be -) $\left.\left\lvert\, \begin{array}{l}\text { ruz Ganga and } \\ \text { Jumna, }\end{array}\right.\right\}$ | $30 \quad 55 \quad 15$ |  |  | Ditto, | This is a rather larger stream, than the Jumna proper. |
| 6 | Source of the Be-\} rai Ganga,....\} | $3057 \quad 15$ | $7883136$ | 12189 |  | This river was even here, rather a large stream: it was crossed on a natural bridge of frozen snow. It has its real source, most likely, about 3 miles higher from the south-western foot of the great snowy peats, Bandermuction. |

Latitudes, Langitudes and Elevations,-Continued.

3. Points on the Rivers includiag their Sources, Confuences, and the places where they enter the Plains.

Latitudes, Longitudes and Elevations,--"-Continued.

| No, | Stations. | Latitude. | $\left\|\begin{array}{c}\text { Longitude } \\ \text { froms } \\ \text { Greenwich. }\end{array}\right\|$ | Elevation. | District of State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | Tirí, ........... | $\left\|\begin{array}{ccc}0 & 1 & 11 \\ 30 & 22 & 50\end{array}\right\|$ | $\circ$ 1 <br> 78 28 <br> Level of  <br> river, $\|$ | $\left\{\begin{array}{c}\text { Feet. } \\ 2328 \\ 2278\end{array}\right\}$ | Garhwal,......\{ | Is the present residence of the Raiju of Garhwal; Sri- nagar his former capital, being reserved by the Bri- lish government. The Bhagirat'hi here, receives the Bhilling, a considerable stream or river, which has its rise, from the snowy chain. The |
|  | Dévaprayága,... | 00822 | $\left\|\begin{array}{cc} 78 & 35 \\ \text { Level of } \\ \text { river, } \end{array}\right\|$ | $\left\{\begin{array}{l} 2266 \\ 1953 \end{array}\right\}$ | Ditto, | The confluence of the Alacananda and Bhagirathi. The former is the larger river, in the proportion of $1 \frac{1}{2}$ to 1 ; each of them is crossed by a bridge of ropes, above the contluence. The Alacananda is the boundary of Garhwal, to the eastward. |
|  | Rikílhés | 7 | $\left\|\begin{array}{ccc} 78 & 17 & 07 \\ \text { Level of } \\ \text { river, } \end{array}\right\|$ | $\left\{\begin{array}{l} 1427 \\ 1377 \end{array}\right\}$ | Déhra Dún,...... | The Ganges (Bhagirat'hi and Alacananda united), here enters the Déhra Dín atits N. E. angle. Its left bonk, continues skirted, by a low range of hills, covered with thick Jungle. <br> The Ganges here enters, the plains of Ilindoostan. This |
|  | Haradzuar, | 95616 | 780940 | 1024 | , aháranpúr Dúab, | celebrated place, is now for the first time accurately fixed. Its position has been determined trigonometrically. |
|  | Jımnuи́tri, . . . . | $30 \quad 5918$ | $78 \quad 2607$ | 10849 | Garhwal | The source of the Jumna: Jamnaútri is a place of pilgrimage and remarkable for boiling springs. The temperature of the water where it issues from the rock is $194^{\circ} \cdot 7$ which for thut elevation, is nearly the heat at which water is converted into steam. See Journal of 1817 . |
|  | Confluence of $B e_{-}$ raf Ganga and Jumna, | 1305515 | $78 \quad 2211$ |  | Ditto | This is a rather larger stream, than the Jumna proper. |
|  | $\left.\begin{array}{\|c} \text { Source of the } B e- \\ \text { rai Ganga,... } \end{array}\right\}$ | 05715 | $\begin{array}{\|lll} 78 & 31 & 36 \end{array}$ | 12189 |  | This river was even here, rather a large stream: it was crossed on a natural bridge of frozen snow. It has its real source, most likely, about 3 miles higher from the south-western foot of the great snowy peak, Banderpucli'h. |

Latitudes, Longitudes and Elevations,--Contimucd.

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Longitudes and Elevations,-Continued.

|  | Stations. | $\text { Latitude. }\left\|\begin{array}{c} \text { Longitude } \\ \text { Creenwich. } \end{array}\right\|$ | Elevation. | District of State. | Remar |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 110 | dhili station, |  | $\begin{aligned} & \text { Feet } \\ & 7254 \end{aligned}$ | Déhra Du | Station on the same ridge, above the small fort of this name. <br> Station, in the old fort, above the village. <br> This station is near No. 4. It was chosen, as being more conveniently situated for some of the small triangles. A ramification of the great Manine peak, between the Jumna and Bhasirat'hó. <br> A temple in the town, on a small hill. Nahan is one of the neatest and most considerable towns, within the mountains. It is the residence of the Rájá of Sirmur . It was occupied by the adranced corps of the army, under General Sir G.Martinuele, 24 th December, 1814 . Station, on the ascent to Bairut fort. |
|  |  | 7730 | 1844 |  |  |
|  | Bhadr $\begin{aligned} & \text { new } \\ & \text { sta }\end{aligned}$ | 30283277756 | 7510 |  |  |
|  | Bhadráj Jonpu | 3032187802 | 7344 |  |  |
|  | Nak | 7716 | 3207 |  |  |
| $\|112\|$ | Bhatríj Juinnsur,..Kangra peak, ... | . $3033 \quad 33,7752$ | 6043 |  |  |
|  |  | 3033 56,77. 4225 | 6660 |  | Station, on the ascent to Bairat fort. Peak between the Jumna and Tons. It is composd of limestone. |
|  |  | 303609775426 | 7806 |  | A small temple on the Bairat ridge. There was a stoc- |
|  | ( Jamu peak,.. ... | 303648777 | 6359 |  | Pealk on the left bank of the Girri. Limestone. <br> Small temple on the Sain ridge, between the Jalál and Girri rivers. |
|  |  | $\left.\begin{array}{lllllll} 30 & 37 & 37 & 77 . & 21 & 24 \end{array} \right\rvert\,$ | 5700 |  |  |
|  | Bonyti Debi, ..... |  |  |  | Small temple and remains of stone stockade, on the Dhat't ridge, of which Jytek is also a peak. <br> Small temple on the peak. |
|  |  | $3045.25 / 77$ | 6439 |  |  |
|  |  | -30 49137771859 | 7048 |  | Ditto. Right bank of Girri. |
|  |  | 3052597708 | 717 |  | A fort belonging to the Patiala chief. drangle of loose stones of 55 by 66 feet. |
|  | Sua Gerhí, ..... | 65 | 56 | Indúr, | Remains of a fort, on high ridge shutting in the Gambar river. .There is a tanls here, for preserving rain water, but no spring within a cousiderable distance. This |
|  |  | 217705 | 7612 | Baghát, | Peak of the limestone range called the Sain ke Dhar, which runs along the right bank of the Girri. Under Ráj. gerh, the Girri breaks through that range. |

Latitudes, Longitudes and Elevations,-Continued.

| No | Stations. | Latitude. $\begin{gathered}\text { Longitu } \\ \text { from } \\ \text { Greenwi }\end{gathered}$ | Elevation. | District or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 125 | Sabhátú Mat'k,.... <br> Manund peak |  | $\begin{aligned} & \text { Feet. } \\ & \mathbf{4 4 5 6} \end{aligned}$ | Beroulli Pergannah, <br> Kyonthal, | Small Hindu temple in the Bazar, above the cantonment. Sabhatú is the station of the 1st Nassirí battalion and of a company of pioneers. In the time of the Gurkhas Bhagti Thappa's force was cantoned here. Peak of a ridge, connected with the Jako or Semles range, throwing off feeders to the Girri, on one side, and to the Asan Ganga, on the other. A wooden temple marks the station. |
|  |  |  | $7800$ |  |  |
|  | Súr Déoíá,...... <br> Nagni fort,....... | $\begin{array}{lllll} 31 & 03 & 25 \end{array}\left\|\begin{array}{llll} 77 & 01 & 94 \end{array}\right\|$ | 5419 | Ditto, ............ | Cumuli of stones marking a peak sacred to Sur, which is a name of Mahadeo. |
|  |  | $\left\|\begin{array}{lll\|lll} 31 & 04 & 29 & 77 & 30 & 24 \end{array}\right\|$ | 8808 |  | Fort garrisoned by Gürkha invalids in our service. It is built of loose stones. Shape, an irregular quadrangle, about 50 feet square and 20 feet high. |
|  | Ramgerh fort, : . |  | 4054 | Indir, ............. | A fort of some extent, lately much increased and strengthened. It was invested in November 1814, by Majos General Sir D. Ocheerlony's army, but was fíally left with a battalion, to watch it, the army having moved on to Malaun. |
|  | Jako station \& peak |  | 8120 7486 | Kyonthal,.......... | A bigh peak of the Semla range. The summit is clay slate. It is remarkably bare of trees to the south, though its declivity, on the north side, is well clothed with pine forest. |
|  |  | $\left\|\begin{array}{lll\|lll} 31 & 05 & 56 & 77 & 10 & 06 \\ 31 & 06 & 12 & 77 & 09 & 20 \end{array}\right\|$ | 7486 |  | A Bungaloze on the Sembu range, the property of Captain Ross. The view of the snowy range from it, is highly interesting. Water is brought from some distance, which is the only objection to a spot, having every other recommendation as a hot weather residence. |
|  | Bud | 310806774123 | 8762 |  | A peak of a lateral ridge, thrown off to the northward of the great range, of which the Chur', Tungriu and Whartu are peaks. There are the remains of a stove fort, a little below the station. |
|  | B |  | 7003 |  | Peak of a high ridge, separating some of the feeders of the Setlej: on the summit is a small temple. |

Latitudes, Longitudes and Elevations,-Continued.

| No. | Stations. | Latitude. | $\left\|\begin{array}{c} \text { Longitude } \\ \text { from } \\ \text { Greenwich. } \end{array}\right\|$ | Elevatiọn. | District or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | Shalli, .. | $\left\|\begin{array}{lll}0 \\ 31^{\circ} & 11 & 1 \\ 1\end{array}\right\|$ | $\left\|\begin{array}{llll}\hline 0 & 7 & 4 & 1 \\ \hline 1\end{array}\right\|$ | $\begin{aligned} & \text { Feet. } \\ & 9623 \end{aligned}$ | Baji \& Kúmhársén,.. | A peak connected with the Chir range, said to be very difficult of access, on account of its peculiar shape. There is a wooden temple on the summit, in which human sacrifices, it is said, were formerly offered to Cací, and some even pretend, are still offered occasionally, in spite of the prohibitions of Government. |

5. Secondary Stations.

Laitudes, Longitudes and Elevations,-Continued.

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Longitudes and Elevations,-Continued.

| No. | Stations. | Latutude. $\left\|\begin{array}{c}\text { Longitude } \\ \text { from } \\ \text { Greenwich. }\end{array}\right\|$ | Elevation. | District or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 165 | Irki, ........ | $\left\|\begin{array}{llllll} 0 & 1 & 1 & 0 & \prime & 11 \end{array}\right\|$ | Feet. | \|Bagal, . . . . . . . . . | Resiuence of the $R{ }^{\prime \prime} j i t$, and formerly the cantonment of Amersini the Gurlha commander. |
|  | \|Surajgerh, ....... | $3109.15,770010$ | 4927 | Indur, . . . . . . . . . | Fort, on the Maloun ridge, invested by the British army, 1st April, 1815, evacuated on the 16 th, in consequence of the establishment of Colonet Thomeson's position, on the heights of Deonthal 14 th and 15 th April, and the unsuccessful attempt, of Bhagti Thappa, to dis. lodge that officer, 16 th April. |
|  | $\begin{aligned} & \text { Godar Deota, ... } \\ & \text { Tara Gert, .... } \end{aligned}$ |  | 8605 | Bisaher, ........... Indúr, .............. | Curious temple, on the peak above the village of Chupar. <br> Small fort commanded by Bhagti Thappa. Invested by General Sir D. Ochtelefony's army, 10th March, 1815 ; a breach having been made on the 11th, the garrison ( 250 men ) evacuated it during the night. |
|  | Dúdú viliage, | $\begin{array}{lll}31 & 11 & 05178 \\ & & \\ & & \end{array}$ | 8732 | Bisaher, .t....... | This village gives name to the district, which has occasionally belonged to Garhival, occasionally been independent. It is on the right baok of the Rupin. |
| 170 | Tikker fort, | $\begin{array}{lllllll}31 & 11 & 17 & 77 & 37 & 29\end{array}$ | 7735 | Ditio, | Small fort or guard house, built of loose stones, a detachment from Kotgerh, is stationed here. |
|  | Rúrí, ........... | 31 11 51 77 44 07 | 5601 | Ditto, | Village, right bank of Pabar. |
|  | Maloun, | $\begin{array}{lll\|lll} 31 & 19 & 39 & 76 & 48 & 16 \end{array}$ | 448 | Cahlur, . ........... | Invested on the 17 th April, and capitulated 15th May, a few days after the arduous operation, of conveying two 18 pounders, up this steep ridge, had been arcomplished; the capitulation, included the delivery of all the Gurkha forts, between the Setlej and the Kcli. |
|  | Chamba fort; .... | 31 13 12 76 43 35 | 4400 | Ditto, ............ | Invested by the British army, 12th March, 1815. It surrendered the 16th. |

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Longitudes and Elevations,-Continued.

Latitudes, Longilules and Elevations,-Continued.

| No. | Stations. | Latitude. | Longitude from Greenwich. | Elevation, | District or State. | Remarks. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\left\lvert\, \begin{array}{cccc}79 & 06^{\prime} & 5 & \prime \prime \\ 78 & 38 & 51\end{array}\right.$ | Feet. 17700 8371 | Chinesc Tartary, . . <br> Bisaber, | Ridge, qrossed on the road from Shipki to Garí. There were a few traces of snow in October. <br> Tartar village, a little above the confluence of the Spitio and Setlej rivers, left tank ọf Setlej. Thers is a Júlla or Cházam, as it ịs here called, constructed of Osier twigs. formed into rope, foz crossing the river. |
|  | $\left\{\begin{array}{cc} \text { Near } & \text { Tashi- } \\ \dot{\text { grang}}, & \text { a smail } \\ \text { Math, } & . . . . . \end{array}\right\}$ | $\left.\left\lvert\, \begin{array}{lll} 31 & 50 & 15 \end{array}\right.\right]$ | 7889290 | 12807 | $\text { Chinese Tartary, .. }\{$ | A small temple of stone, much in the Hindú stype, on tha roed frow Tashigatig to Nalso. |
| 200 | Nukí, . . . . . . . . . | $3 \begin{array}{lll}31 & 52 & 34\end{array}{ }^{7}$ | 78.36611 | 11975 | Bisalser, | Tartar village, in tŗe Pergannaih of Hangaroang, left bank of the 'Spit'\} river, barley grows, some hundred feet higher, than the village. Osiers, and Poplars, are to be seen near the village. |
|  | Skalkar, | $320002 \%$ | $\begin{array}{llll}78 & 32 & 18\end{array}$ | 10272 |  | Fort on border of Bisuher, right bank of Spiti: |
|  | Lapcha pass, | 320\% 06 | 78 39 06\| | 13628 | Ditto, | Pass from Skialkar fort, to Súrma village, no snow in ( October, but ink froze at $10 \mathrm{~A} . \mathrm{M}$. |

Appendix containing Geodesic Calculations and Investigations of the Formule, on which they are founded.-With Tables.

1. It has been generally deemed sufficient to perform the calculations required in a survey, according to the method called Mercator's, rendered very expeditious by means of the conformity, which the scale of logarithmic tangents bears to Mercator's artificial table of cosecants of the latitude. In navigation, where the distance is measured on the Rhumb, this method is strictly true, , but it cannot give the relation between differences of latitude, or longitude, and the distances of places. Considering the earth as a sphere, it is evident that the shortest line between any two points is the arc of a great circlo, and it is in this line that distances properly speaking should be taken.. In Geography, therefore, or Geodesie this method is not allowable, where a certain degree of accuracy is aspired to; indeed where the distance is great ${ }_{2}$, the errors occasioned by it may be, very considerable.
2. To employ the common analogies of splierical trigonometry in these calculations, when they are numerous, as is the case of this survey, would be a prodigious waste of time: it would involve too, numerous petty errors occasioned by the want of sufficient extent in the tables, which might by accumulation increase to something considerable, that would in all probability occasion much loss of time in fruitless endeavours to correct. But supposing the contrary of all this were true, it is still to be recollected, that the earth is not a splere, but an irregular figure approaching so nearly to an ellipsoid, as to be safely considered as such in our finest
and most accurate calculation.* If then we can resort to a method of calculation, so true as to have regard to the deviation of the figure of the earth from the sphere, yet equally convenient and expeditious as though we had considered it to be a plane, we shall I conceive be justified in adopting it even though it may seem like affecting a degree of accuracy, of which the operations of such a survey are not susceptible. When there are two methods equally intelligible and equally short, one of which is but an approximation and the other strictly accurate, there car be but one opinion as to which should be chosen. In the one we cut off every source of error but that of observation, and if we can do this without a greater expence of time, it would seem like courting error to choose the other. But those who have attempted these uperations know how much will al ways 'attach itself to the work in the field, and how unnecessary it is to increase it by additions from other sources. The calculations of this sur. vey have therefore all been made on the supposition of the earth's being an ellipsoid, and it is to be explained here what the nature is of the formulæ on which they have been conducted.
3. The first step is to determine the dirmensions of the earth and the degree of ellipticity, and this has been done by means of Colonel LairsTon's formulæ, given in the 12th Volume of the Asiatic Researches. The Data which have been adopted are those generally allowed to be the most unexceptionable, as they are the latest measurements, viz. the French

[^39]degree,* as determined by De Mambre end Muranno. The English by Colonel Mudge. The Swedish by Swanperg and Oreerboom, iand the Indian by Colonel Lambton. These vere arranged to form thrempesults as follows:

foll mest



With this ellipticity and hy Colonel Lanipton's formulap, the equatorial degree was calculated, substituting each of these 4 degrees in the equation. This furnished four results as follows:

$$
\begin{aligned}
& \text { By the Englis } \bar{n} \text { degree, ............ } 604318 \\
& \text { French, ...................... } 1 / 216 \\
& \text { Indiann,..................... } 56 \cdot \text { g } \\
& \text { Swedish, ..............o. .... } 5 \% \text {. }
\end{aligned}
$$

## Mean, 60460

[^40]Wrui this mean equatorial degnee of 60460 fathoms, and the mean ellipticity of $\frac{1}{306 \cdot 157}$, the degrees of lattude, and of the perpendicalar to the meridian, were calculated by means of Colonel Lambron's formulæ, Ior latitudes $30^{\circ}$, $3 \psi^{2}$ and $39^{\circ}$, being the limits of the survey. The results are given whables 1,2. Table 3, gives the diference of the degrees of latitude, and oblique degrees calculated from the same Data by means of Mr. Dazby's formulæ given in the $2 d$ Volume, trigonometrical survey of England and Wales.* These tables will be often referred to.
-4. When from given distances and Asmudte we are to calculate differ. ences of longitude and latudede, ationtion to the real figure of the earth is required to avoid conisideable entros, ascis evident fium the manner in Which longitudes and latitudes are reckoned. when however we are to cal. culate the sides and angles of triangles of comparatively small extent, it is dertaim that a cistegard of the devation of the figure from a sphere cannot ocasion any error Distances therefore on the ellipsoid if they be not too great; may be determined by suposing them refered to a sphere. This is an important distinction and not to "be forgotten. "The resolution of small spherical triangles has been made equally simple, as those on a plane, by the beautifiltheoren of LEGENDRE, in which he proves that by deducting $\frac{1}{3}$ of the excess of the three spherical angles above $180^{\circ}$, from

[^41]eacli of them we obtain three angles, which are those of a plane triangle, having it's sides respectively equal to those of the original spherical triangle. The application of this rule is so simple as to require no explanation, all that is necessary being a table of the spherical excess as it is called, which being yery small in most cases, and proportional to the area of the triangle, may be determined sufficiently near a priori. This is given in table 4.
5. Although this theorem be a very convenient one, yet it is not by any means indispensible. It is easy to apply the common spherical analogies to small triangles, and this without any extension of the tables; by considering $t_{i} *$ sines and tangents as referred to a radius whose length is, equal to that of the sphere, and expressed in the same measure as the sides of the triangle. The sines and tangents of small arcs, differ so little from the arcs themselves, that it appears to be the most direct as well as the easiest way to find them by means of those differences. Thus the logarithmic sine, (Bennycastle's Trigonometry) $\left.=\log \cdot \operatorname{arc}-\frac{1}{\frac{1}{\mu}\left(\frac{a^{2}}{2.3}\right.} r^{2}+\frac{a^{4}}{2^{2} \cdot 3^{2}} 5 r^{2} \& c.\right)$ and Log. tang. $=$ Log. arc $+\frac{1}{M}\left(\frac{a^{8}}{3 r^{2}}+\frac{7 a 4}{2.3^{2}} 5 r^{4} \& c_{v}\right)$ The first terms of these series are sufficient for our purpose, and taking these it is evident that the difference of the tangent from the arc is double the difference of the sine; that in the former case it is additive, in the latter subtractive. All that is necessary then, is to calculate $\frac{a^{2}}{r^{2}} \frac{1}{3} M r$, being the radius of the earth, and $\frac{1}{M}$ being the reciprocal of the logarithmic modulus $=2.302581$. Table 5, gives this correction for the probable distances of the survey. For sines, half of it is to be subtracted from
the logarithm of the distance in feet, and for tangents it is to be added. By ineans of this table, the caiculation of small spherical triangles become as eazy as plane ones, and this without any reference to the sperical exicess, which is sometimes:troublesome.
6. IT is now to be considered what effect the figure of the earth will have on the determination of differences of latitude, longitude and Azimuth. In the first place it is very evident that the distance of any point, from the meridian and perpendicular of another, may be found without sensible error by considering the earth as a sphere (Art, 4). This then gives the latitude of one end of the perpendicular to the meridian; to fond that of the other with the difference of longitude, and Azimuth is, the second step.


Let $P C$ represent part of the elliptic meridian, $P$ being the pole and $C$ the centre of the earth Let $A B$ be the given distance from the meridian being at right argles to $P^{s}$ B. It is required from the latitude of the point $B$, and the distance $A B$ to determine first, the latitude of $A$ secondly, the difference of longitude or angle at $P$, and thirdly, the Azimuth of $B$ from $A$.

Ar the point $B$ draw the radus of curvature $B E{ }^{*}$, intersecting the

[^42]axis in' $E \cdot \operatorname{Join} A \mathbb{E}$, also $A B$. With the radius $B E$ find the value of the angle $A E B$. There are then given in the solid angle $P E A B$, the two plane angles $A, B, B P($ Co-lat. $B)$, and the inclination of their planes $=90^{\circ}$ to find the third angie $P E B$, and the inclination of it's plane with each of the others. But this is evidently that case of right angled triangles, in which the base and perpendicular are given to find the hypothenuse and the angles.
7. Ir is however to be remarked that though the inclination of the planes $P A E, P B$ be really the difference of longitude of $A B$, yet the other results of the spherical analogy do not equally answer for the spheroid. For the angle $P E A$ which is that found by spherical computation, is not strictly speaking the Co-latitude of $A$. The trae Co-latitude of this point is the angle formed by the vertical $A D$ with the polar axis, that is the angle $P D A$. The difference of the two angles is $D A E$, and. this is the correction to be applied in order to have the true Collatitude in the spheroid.* Likewise is it cvident that the inclination of the planes $P E A, ' A E B$ is not the real Azimuth' of the point $B$ fom $A$, this being determined by the angle which the vertical plane passing through $A$, forms with the meridian that is to'say by the incination of the planes $A D B_{\text {, }}$ $P D A$. It is true, that each of these results may for all practical purposes be supposed the measure of the Colatitude and Avimuth, but it was thought necessary to make this remark and to give an expression for the two cor-

[^43]rections, in order to she that the error is really too small to be worth attending to.
8. Tus then is the principle, on which the determination of the differences of latitude, longitude and Azmuth, of the two ends of an aro of distance, on the spheroid, is founded. The whole is reduced by considering the matter in this way, to the resolution of a right angled spherical triangle. All that is required, being the Radii of curvature of the perpendicular to the meridian, for the points $A$ and $\mathcal{B}$, and the distance of their points of intersection in the polar axis $D \mathcal{E}$. The former are contamed in Table 2, and the latter in Table 6, calculated from the formula $2^{\prime \prime} c$ (sine $\lambda$ - sine $\dot{\lambda}$ ) where $2 c$ means the difference of the axes and $\lambda, \dot{\lambda}$, the latitudes of the points $B A$. It may be more conveniently expressed. as follows:
$$
D E=2 c d \mathbb{L}, \sin \mathrm{I} I \cos \left(\lambda+\frac{\pi}{2} d L\right)
$$
9. The problem being thus simplified and reduced to the resolution of a common spherical analogy, we may next inquire whether the received formula may not in the cases under consideration, be rendered something more convenient in calculation, by employing the substitutions and developments, which the arithmetic of sines offers.
10. IN the spherical triangle $P A B$ right angled at $D$, we have the
 sides $P B_{2}($ Co-latitude $B$ ), $A B$ (distance from the meridian reduced to ${ }^{\circ}$ ': and ") to find the third side $\boldsymbol{P} A$ (Co-latitude of $A$ ), and the angles $P$ (diff. long.) $\mathbb{P} A \mathbb{B}$ Asinuth of $B$ from $A$.

PuT $\mathcal{L}=$ the latitude of $B$, and $L$ that of $A, L$ beintr $=\dot{L}+A L-$ Let $\mu$ be the distance from the meridian in feet, and $\delta$ the value of it in degrees, and $=A B P$ the difference of longitude, and $P A B=90^{\circ}$ - dzo We have, (Bonnycastre's Trigonometry, p. 407).

$$
\begin{equation*}
\text { Tang. } \frac{1}{2} d K_{1}=\operatorname{tang} \cdot \frac{2}{2} \delta, \operatorname{tang} \cdot \frac{1}{2}(L+L) \tag{1}
\end{equation*}
$$

But the arc of 1 is the same as the tangent to 8 places of figures, and d $L$ can never exceed $i$, we may therefore for tangent $\frac{1}{2} d L$ substitute its equivalent $\frac{\frac{2}{4} u^{\prime \prime} L}{x^{\prime \prime}}$, multiplying by $2 \mathbb{R}^{\prime \prime}$ we get,

Now tang. $\frac{1}{2}(L+\dot{L})=$ tang. $L+\frac{1}{2} d \boldsymbol{L}$, and tang. $L+\frac{1}{2} d L=$ (Ronnycastle's Trigonometry, p. 409). tang. $L+\frac{\text { sine } \frac{d}{} d \kappa}{\operatorname{Cos} L, \cos \left(L+-\frac{1}{2} d T\right)}$, , account of the extreme smallness of value of the second member, it is equivalent to $\frac{\sin \frac{2}{2} d L}{\operatorname{Cos}^{2} L}$

The expression 2 becomes then,

Substituming for sine $\frac{1}{2} d$ Lit's approximate value。
Tang. ${ }^{2} \frac{I}{2} \delta$, tang. $L$ it becomes

This second member is evidently equal to the ist multiplication by



Putring now tang. $\frac{1}{2} \delta=\frac{\delta^{n}}{2 n^{\prime \prime}}, f^{\text {畨 (when } f \text { means the factor, the loga- }}$ rithm of which is to be found in Table 5), and substituting this value in the preceding, we shall have,

$$
a \tilde{H}_{1}=\frac{\delta^{2}}{2 R^{\prime \prime}}, f^{2}, \text { tang. } L+\frac{A \lambda^{2}}{L R^{\prime \prime} 2 \cos 2 L_{1}}
$$

$f^{\prime}$ being rejected from the second member as too sinall to affect its value,

Now ô" was originally put equal to $\frac{\mu}{p}, p$ being the number of feet in one second of the perpendicular.

Restoring this value we have

The correction indicated in article 7 , may be easily found as follows: It is evident (fig. 1), that $A D$; sine $\mathcal{D} E A: D E ;$ sine correction. But $A D$ is the radius of curvature at $A(p)$. $D E A$ is the Co-latitude found by the abovs formula, and $D E$ has been shewn, (Art. 8) to be equal to $2 c d L$, sine $1 / \operatorname{Cos}\left({ }^{\lambda}+\frac{1}{2} d L\right)$, on account of the smallness of the correction we are seeking; this is equivalent to $2 c \frac{d L^{\prime \prime}}{R^{\prime \prime}} \operatorname{Cos} \dot{L}$ putting then $x=$ correction sought, and recollecting that sine $x^{\prime \prime}=\frac{z^{\prime \prime}}{k^{\prime \prime}}$ we shall have

$$
\begin{aligned}
& \rho: \operatorname{Cos} \mathbb{L}:: \frac{200^{\prime \prime} \hbar, \cos \dot{L}}{R^{\prime \prime}}: \frac{x^{\prime}}{\kappa^{\prime \prime}}
\end{aligned}
$$

This correction may be taken at once out of Table 7, it is additive as noticed, (Art. 7) to the Co-latitude found by the above, that is subtractive

[^44] puting $a=$ the factor $\frac{\text { Tang. }}{2 R^{2} p^{2}}$ found in Table 8 , and $b=$ the factor $\frac{\mu^{2}}{\frac{L}{p^{2}} k_{k^{\prime \prime}}}$ found in Trable 9 , and $x^{\prime \prime}=$ the last correction.
$$
d^{\prime \prime} L=\mu^{\mu^{2}} f^{2} a+A b+x^{\prime \prime}
$$
" $d$ " $L$ is evidently to be subtracted from the given latitude $\mathbb{L}$.

## - EXAMPLE.

The distance of a snowy peak from the meridian of Belville is 762,810 feet. The latitude of the intersection of the perpendicular with the meridian is $30^{\circ} 23^{\prime} 39^{\circ} \cdot 5$. Required the latitude of the peak?

$$
\text { Here } \mu=762,810 \text {, and } L=30^{\circ} 23395
$$

Msi term. Log. of $762,810=5 \cdot 882,421$ Kog. factor for tang. - 0.000, 191

$$
5 \cdot 882,512
$$

Squared, 1•65,224
A (able number), $0 \cdot 139,81$

$$
80.358=1 \cdot 905,08
$$

2 d term. Log. of $A=1.905$
b. (table 6.535
.036) 8.556
Correction $x=39^{\prime \prime}$.

$$
\left.\begin{array}{rl}
\text { Thus we have } d \mathbb{L} & =80.358 \\
4 & .036 \\
+\quad .390
\end{array}\right\}
$$

$302218 \%$ latitude of the peak.

The 2d term not amounting in this extreme case, to $\cdot 1^{\prime \prime}$ of a second, may be always neglected, and consequently the calculation reduces itself to the addition of 3 logarithms.

For the longitude we have,
Tangent $P=\frac{\text { Tang. } \delta .}{\operatorname{Cos} X_{0}}$

Bur tangent $\mathbb{P}=\frac{P^{\prime \prime}}{n^{\prime \prime}}+\frac{\frac{T}{3}}{\frac{p 3}{13}}$ - Ren $^{\prime \prime}$ being the number of seconds in the arc $=$ to radius.

$$
\text { Therefore } \frac{P^{\prime \prime}}{R^{\prime \prime}}=\frac{\text { Tang. } \frac{X}{L}}{\operatorname{Cos} L}-\frac{1}{3} \frac{\frac{1}{P} 3}{R^{\prime \prime} 3}
$$

$$
\text { Multiplying by } \ddot{R} ; \boldsymbol{P}^{n}=\ddot{R} \frac{\text { Tang. } \delta}{\operatorname{Cos} \tilde{L}}-\frac{1}{3} \frac{\hat{P}^{n}}{R^{n}=}
$$

Again in like manner tangent $\delta=\frac{\delta^{\prime \prime}}{R^{\prime \prime}} f, f$ being the factor given by Table 5, or that by which the are being multiplied the product is the tangent. Also $\delta^{\prime \prime}=\frac{\mu}{p} p$ being the number of feet in $l^{\prime \prime}$ of the perpendicular, substituting these values the above equation becomes,

$$
\mathbb{P}=\frac{\mu f}{p \operatorname{Cos} L}-\frac{1}{3} \frac{p^{\prime \prime} 3}{k^{n_{3}}}
$$

As the second number is so small we may for $P^{3}$ substitute it's ap: proximate value $\frac{\mu^{3} f^{3}}{R^{5} \operatorname{Cos} 2 L}$ which will give,

$$
R^{\prime \prime}=\frac{\mu f}{p_{1} \operatorname{Cos} h}-\frac{\mu^{3} f^{3}}{9 R^{\prime \prime} p^{3} \operatorname{los}^{3} \dot{L}}
$$

Ir is evident that the second member is merely the cube of the first divided by $3 R^{\prime \prime 2}$ : although this makes the calculation sufficiently simple, yet I have given a table, (Table 11), from which it may be taken by inspection, the argument being the approximate value of $\mathbb{P}$, or that found by the furst part, $p$ Cos $H$ is given in Table 10 en

To shew the use of the formula take the last example.
Log. us, 5•832,421
Log. $f 20000,191$ Table 5. p, Cos I, Ar. Co. 8.05\%,697 Table 10,

$$
8715 \cdot 8 \quad 5 \cdot 940,309
$$

Comection to 8\%16, $\quad 503$
Table 11.
Long. $87108=2$ 25 $10^{\circ 4}$ true to 2"

There now remains only the Azimuth, and to determine this we have, Tang. $\mathbb{P} \mathbb{R}: \mathbb{R}::$ sine $A \mathbb{B}$ Cot: $\mathbb{P} A \mathbb{B}$, or employing the proper notation, Cot. $\mathcal{L}: P:$ : sine $\delta: \operatorname{Cot} .(90-d z)=$. tang. da.
 $\delta$ tangent $\mathbb{I}_{0}$

Now substituting as in the last equation $\frac{\mu}{R_{p}^{\prime \prime}} f$ for sine $\delta$ we have,

$$
\text { Tang. } \mathrm{dz} .=\frac{\mu \text { Tang. } i}{\lambda_{i}^{*} p} f_{0}
$$

Also tangent $d z_{q}=\frac{d \ddot{z}}{R^{\prime \prime}}+\frac{1}{3} \frac{\delta z^{\prime \prime} 3}{R^{\prime \prime} 3}$; putting for this last it's approximate value,

$$
\begin{aligned}
& \frac{\mu^{3} \text { Tang. }{ }^{3} f^{3}}{p^{3}} \text { multiplying by } R^{\prime \prime} \text { and reducing, we have finally, } \\
& \mathrm{dz} z^{\prime \prime}=\frac{\mu \text { Tang. } E_{1}}{p} f-\frac{A^{3}}{3 R^{\prime \prime} 2} A \text { being the first term. } \frac{\text { Tang. } . \Sigma}{p} \text { is found }
\end{aligned}
$$ in Table 12, and the term $\frac{\Lambda^{3}}{3 R^{2}}$ may be taken at sight from Table 11 , the argument being the approximate value of $\mathrm{dz} z^{\prime \prime}$.

FOR an illustration of the formula take the same example,

$$
\mu=5 \cdot 882,421
$$

$$
\begin{array}{rrr}
\text { Log. } f & 9 \cdot 999,904 & \text { Table } 5 . \\
\frac{\text { Tang. } .}{p} & 7 \cdot 761,804 & \text { Table } 12 .
\end{array}
$$

$$
\begin{aligned}
& \text { 1st term, } 4406^{\circ 8} 8 \\
& 2 \mathrm{Sd} \text { ditto, }-0.644,129 \\
& 4406=1136^{\circ}
\end{aligned}
$$

As to the reduction of this result to that in the spherical it must be far below $\frac{1}{2}$ second. For as the angles $A D B, A E B$, are the same, and as the angles $P D A, P E A$, differ in this extreme case only $\frac{4}{10}$ of a second; it is evident that the inclination of the planes $P D A, A D B$ and $A E B$, must also be the same very nearly, or at least within the same limits: and VOL. $x$ xr.
as Asimuths are far from the precision of 3 or 4 it would be a loss of time atteading to this correction.

Ir is thus then that the diferences of latitude, longitude and Asimuth are found; the calculations are short and symmetrical, and the employment of the several tables are a good assurance against errors accumulating too much. The figure of the earth is fully attended to, and yet the whole operation is shorter, simpler and less liable to oversight, than even the very erroneous, though common method called Mercator'so Having shewn the principles, on which the following results have been obtained, we may now proceed to the details of the calculation.

The latitude of the Belville and Churi stations have been stated at $299^{\circ} 57^{\prime \prime} 10^{\prime \prime}$ and $30^{\circ} 50^{\circ} 18$, the difference being $53^{\circ \prime} 8^{\circ \prime}$. The Azimath was found to be 32505 N . W. It is proposed to determine their distance, regard being had to the figure of the earth.



Article 9. $\quad 3$. But $x^{*}=\frac{\mu^{2} \text { Tang. } L \text {. }}{2 r_{\text {. }}}$

[^45]By spherl. Trig. 4. And sine $\mu=\operatorname{sine} \delta$ sine $\mathbb{Z}$, or $\mu f=f \delta$ sine $\mathbb{Z}$ 。
Therefore $5 . \delta f=\frac{d L f}{\operatorname{Cos} z}+\frac{A^{2} \operatorname{sine} 2 z \text { Tang. } L}{2 r_{0}}$ $r$ being the radius of the spheroid. Thus we have $d L_{1}=5 \cdot 3 \cdot 0 \cdot 3188^{\circ} \cdot \log$ 。 $\quad 3 \cdot 503,518$ f. 000,344
feet in il of lat. $30^{\circ} 23 \frac{1}{2}$ Log. of (Table 1), $2 \cdot 004,401$


Approximate value 8 322,620 $5 \cdot 509,036$

| $f$ Ar. Co, | 909,656 |
| ---: | ---: | ---: |
| $A^{2}$, | 1.018 |
| Sine ${ }^{2} Z$, | 7.550 |
| Tang. L, | 9.945 |
| $2 \times$ Ar. Co | 2.679 |
| $+10=$ | 1.024 |
| $\delta=$ | 322,630 feet. |

Having thus determined the distance, the next point is to settle the value of the angles. But before entering on this subject, it is necessary to give some short account of the stations, and the several reductions made in the observed angles, to what is termed the centre of the station. 1. The Chuir is a mountain which divides the province of Sirmor from Jubal, elevated nearly 12000 feet above the sea, and covered for a considerable period of the year with snow. It is the highest part of a great ridge or chain of mountains, rumning for a considerable distance, and easy to be traced. The signal, whicln was a pyramid 40 feet in height, built of the trunks of
trees, was erected on the crest or edge of the long back that distinguishes the high part of this ridge, and which is properly called the Chứr.* On account of the exposed nature of this site, and the tremendous winds that reign on such elevated peaks, it was found that nothing could be satisfactorily executed on such a spot, and therefore most of the observations were made at a place a little below this, where the sudden sinking of the long back, I have described, leaves a hollow tolerably sheltered, as well by its situation, as by the forest which has here its limit. It was from this place that the white lights, which it was necessary to use at Belville, were observed, and indeed most of the observations made with the theodolite. This being the case, it was thought necessary to have the distance of this point from the pyramid, accurately determined, and this was done by means of a small triangulation, proceeding from a base of 42 feet carefully measured. The distance was found by two sets of triangles, in all of which the three angles were observed, and the difference of the results is only a few feet: 447 feet may $I$ conceive be taken as the true distance of the station of observation from the pyramid, and with this distance the reductions of the observed angles are calculated.
2. Belville (the residence of the Judge and Magistrate), is, as already noticed, the station of Saháranpur. The place where the observations have been made is a pillar of masonry, near a corner of the house, which latter being entirely white, and sufficiently large, forms a very good signal, and is visible at great distances in the mountains. Fig. 1, (Plate IV.) shews

[^46]

the position of the pillar, with respect to the house, with the dimensions of the latter, and the directions of the principal stations from it. The reductions are made by measuring the distance of the point to be reduced on a perpendicular, to the direction of the station which has been observed, or from which the observation has been made, and turning the value of this normal into seconds by Table 13.
3. Bairat a fort in Jaunsar, on the summit of a peak, elevated nearly 7000 feet above the sea, is the third station.' "It' is a quadrangle of loose stones with some slated huts inside. 'The place of observation is a pillar built by Captain Hodgson within the fort, the position of which is shewn as well as the dimensions of the furt, in fig. 2, (Plate IV). There is an outer wall, one corner of which is sufficiently high to be well defined: it has been sometimes observed, a flag staff being erected to mark the spot. This is also indicated in the figure.
4. Surkanda is a high mountain on the border of Gertiwal, and the Dún. The pyramid which forms the signal is similar to that at the Chur, and is erected over the centre of a small temple with a pointed roof, which had been the point always observed previous to the erection of the signal. The place of observation is a stone pillar built close to a corner of this temple: the direction and dimensions of the latter being all marked in fig. 3, (Plate IV).

Front the Chur as already noticed the station of Belville is not visible, and we were therefore compelled to use white lights.

VOL. XIV.
4 R

In October 1817, I made the following observations with the theodo lite, well levelled on a stone pillar.
16th. The light was found to be to the right of the fixed mark, ..... $459^{\circ} 10^{\prime \prime}$
17 th. ..... 25Mean, 45918
The fort of Bairat, (centre) was again found to be left of the mark, ..... $4741 \quad 10$
Another day, ..... 02
a 3d observation, ..... 4035
Mean, 440 ..... 56
The point observed, is 9 feet from the direction of the pillar, ..... 11474045
This angle was found to be by the large circle in June 1818, ..... 474035
Mean, ..... 474040
Belville, ..... 459,18
$5239 \quad 58$

The pyramid formed an angle of $131 \cdot 18$ with Belville, and consequently, 183.58 with Bairát. With these angles, the approximate distances
322:600, and the distance of the pyramid 447 feet, we get the reductionsto the centre of the station as follows:
Reduction for Bairât in Asimutht, ..... + 0.37
Belville ditto, ..... $334 \cdot 5$
Total reduction, ..... - 412
Observed angle, ..... 523958
True angle reduced to centre, ..... 523546

Ar Belville I found the angle between the Chur pyramid, and Bairait fort, as follows:

The Azimuth of the Chur taken by double and single elongations of the pole star, was found by both Captain Hodgson and myself, to be $32505^{\prime \prime}$. This was by a mean of 7 comparisons with the standard mark. The Azimuth of Bairát centre was in like manner found by two such comparisong to be $28^{\circ} 03^{21} \frac{1}{2}$, (for details see observations in December)。 This gives the Azimuth of the pillar, ................... 8803030.5 . Mean, $28^{\circ} 03 \quad 30^{\prime \prime}$

$$
32505
$$

$$
312835 \cdot 5
$$

[^47]At Bairat, again, the angle between the Chur pyramid and left corner of Belville, as observed by me with the theodolite, was by a mean of great many observations, $95.56^{\circ} 13^{\prime \prime}$. . Reduction 21 feet $=+17$

Corrected angle, 9556.30

Captan Hodgson observed with his large circle, the angle between the Chưr pyramid, and the centre of Belville to be, $9555^{\circ} 17$ Reduction 91 feet, +01.13

Corrected angle, 955630
These agree well. The three angles are then, Bairat, $95 \quad 50^{\circ} \quad 30^{\circ \prime}-17^{\circ \prime}$
Belville, $312835.5-17$
Chuŕ, $52 \quad 3546 \quad-17$

Sum, 18000 51
Should be, 1800010

$$
\begin{array}{rrr}
\text { sine Aro Co, ..... } 955613 & 0.002,336 \\
: 322,630 & 5 \cdot 508,705 \\
\therefore \quad \text { Sine, } 523529 & 9 \cdot 899,997 \\
& \\
\text { Belville-Bairât, } \ldots 2577 \text { Fee. } 655 & 5 \cdot 411,038 \\
\text { Sine, 31 } 28^{\circ} 18^{\circ} & 9 \cdot 717,734
\end{array}
$$

Chưr-Bairatı,...... $169,346 \quad 5 \cdot 288,7 \% 5$

Calculation of the Latitude of Bairat.
Distance, 257,655 Log. 5•411,038
-411,038
Azimuth, $28^{\circ} 0330^{\prime \prime}$
$\frac{1}{3}$ Spher. Ex. - $\}^{\text {Cos. } 9 \cdot 945,697}$ Sine, $28^{\circ} 03^{20} 0^{\prime \prime} \cdot 672,424$

$$
\text { Log. } x \cdot 356,735 ; \mu=121,189 \quad \cdot 083,462
$$

Log. of feet in illat. 2004,394.

## Dific of lat. Ist part $2250.8=3 \cdot 352,341$

Log. distance from meridian $=$ Log. $\mu 5.083 \& \mu^{2}=0.166$ Tab. 8 to

$$
3034070.143
$$

Difference of latitude second part, $. . . . . . . \quad 2 \cdot 0=0 \cdot 309$
Difference of latitude first part, . . . . ...... $22500 \cdot 8$
Second ditto, - 2.0


Posution of Surkanda on the base, Belville-Bairát $=257,655$ feet.

At Surkanda 1 observed the angle between the middle comer of Bairat fort and the centre of Beiville, (vide observations of October), to be as follows:

| 16th | $64^{\circ} 47^{\prime \prime} 55^{\prime \prime}$ |
| :---: | :---: |
| 17 th | 64-48 10 |
| 20th | $644837 \cdot 5$ |
| 21 st | 644839 |
| 24th | $-644734$ |
| 26 h | $6447 \cdot 27$ |

Reduction to centre, $\left\{\begin{array}{l}\text { Belville } 14 \text { feet, } \quad 10+\text { in Azimuth. } \\ \text { Bairat } 8 \cdot 6 \text { feet, } \\ 14+\text { Ditto. }\end{array}\right.$. 644808

> Reduction to Bairait pillar 18 feet,.. $29+$
> Belville pillar 98 fcet,.. 0111 - in Azimuth. 644948

At Belville the angle between the centre of Bairait fort and Surkanda, pyramid was found, (vide observations for November and December),

$$
\stackrel{\circ}{26} 27^{\prime \prime} 15^{\prime \prime}
$$

16

$$
\text { Mean, } 2627 \quad 15.5
$$

Reduction to Bairuit pillar 40 feet,.... ..... 32

At Bairat the angle was observed byme in March 1818. The niean of a great many intersections, gave reduced to the pillar $88^{\circ} 4339^{\prime \prime}$.

Now we have,
Bairait, ...... $88^{\circ} \quad 43^{\prime} \quad 39-3$
Belville,...... 26 26 43-3
Surkanda,.... $64 \quad 49 \quad 48-3$
$180 \quad 00 \quad 10 \quad 9$
Should be, ... $18000 \quad 08$
Sine of $64^{\circ} 49^{\prime} 45^{\prime \prime} \quad 0 \cdot 043,330$
$: 257,655 \quad 5 \cdot 411,038$
: : Sine $88^{\circ} 43^{\prime} 36^{\prime \prime} \quad 9: 999,893$

## Surkanda-Belville, 284,61\% 5•454,261

Sine $26^{\circ} 26^{\prime} 40^{\prime \prime} \quad 9 \cdot 648,682$

126,780 .5:103,050

Calculation for the Latitude of Surkanda. Distance from Belville, 284,617

Azimuth, $54^{\circ} 30^{\prime} 1 \mathbf{6}^{\prime \prime}$
Spherical excess, $\quad 9$
Log. 284,617 5•454,261 -454,261


$$
\text { Log. } \pi=5 \cdot 218,185 \quad-25 \cdot 364,970
$$

$$
\text { Feat in I" lat. } \quad 9 \cdot 004,388
$$

## $1636^{*} \cdot 1 \quad 3 \cdot 213,797$

Diff. lat. Ist part, 27 16•1

$$
\text { Log. } \mu^{2} 0.730
$$

Tab. 8 to $30^{\circ} 24^{i}=0.144$
$7 \times 15 \quad 0.874$
$2708 \cdot 6$
295710
$302418 \cdot 6$

But we may also calculate the position of Surkanda taking as our base, the distance Belville-Bairát as deduced from the observed latitudes.

> Latitude of Belville, $\ldots . .29^{\circ} 5 \dot{7} 10^{\prime \prime}$
> Latitude of Bairát,.

Azimath $2803^{\circ} 15.5$ Difference of latitude,... $\quad 3718 \%=2238^{\circ} .5$

| log. $2238 \cdot 5$ | $3 \cdot 249,957$ |
| :--- | :--- |
| Feet in 1 lat. | $2 \cdot 004,292$ |
| Log. factor to tang. | $0 \cdot 000,017$ |
|  | $5 \cdot 354,266$ |

Cos, $Z, \quad 9 \cdot 945,697$
$256,240=$ appr. value ${ }^{\delta}=5 \cdot 408,659$
Factor to tang. $\quad-02 \%$
$A^{2} \quad 0.817$ The square of the $15 t$ term, or appro-
Sine Z,$\quad 9.672$ [ximate value of $\delta$.
Tang. $\mathbb{Z}, \quad 9.727$
Tang. L, 9.771
$r$ Ar. Co., 2.378
$+232=$ correction, 2.365

256,472 Belville from Bairát.

$$
\begin{array}{cc}
\text { Sine } 64^{\circ} 49^{\prime} 45^{\circ} . & \text { Ar Co } \\
256,472 & 0 \cdot 043,330 \\
5 \cdot 409,042
\end{array}
$$

Sine $88^{\circ} 4336^{4 t} \quad 9 \cdot 999,893$

Surkanda from Belville, $5 \cdot 452,265=283,312$ feet.

## Calculation of the Latitude.

Log. distance, 5•452,265 5•452,275
Cos. $Z \frac{2}{3}$ S. excess, $9 \cdot 763,924$ Sine $Z$ - $\frac{1}{3}$ S. E. $9 \cdot 910,709$

$$
\text { Log. } \pi 5 \cdot 216,189 \quad \text { Log. } \mu \quad 5 \cdot 362,984
$$

Feet in 1 lat. 2•004,388
$1628^{\prime \prime} 6 \quad 3 \cdot 211,811$
VOL. XIV.
4. T

$$
\mu^{2} \quad 0.725
$$

Tang. Is, $\quad 9 \cdot 768$
$2 \mathbb{R}^{4 \prime}$ A.C. 4.385
$p^{2}$ Ar. Co., $5 \cdot 988$
$-7.3 \quad$ Correction, 0.866

## $1621 \cdot 3=$ <br> $27^{1} 01 \cdot 3$ <br> 295710

302411.3 latitude of Surkanda.

End of the Appendix.

Farious Tables useful in expediting Geodesic Calculations; Calculated on an Ellipticity of $\frac{1}{30 \cdot \cdot 157}$ and an Equatorial Degree of 60,640 Fathoms.

> TABLE

The length of the Degree and Minute of Latitude in Fathoms with their Logarithms, also the Logarithm of the Radius of Curvature of the Meridian, to every 10 of Latitude.

|  | Degree of Latitude. |  | Logarithazs. | Diff. | Fathoms <br> in $\ddot{1}$ | Diff. | $\left\|\begin{array}{l} \text { Log. of Fa- } \\ \text { thoms in } 1^{\prime} \\ \text { or ft. in } 10^{\prime \prime} \end{array}\right\|$ | Diff. | Log. of Radius of Curvature. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30.00 | $60 \cdot 607.7$ | 1.5 | 782,5278 | 107 | 1010.128 |  | 004,3764 |  | 540,6504 |  |
| - 10 | -09.2 | 1.5 | 5385 | 107 | -153 | . 025 | 3871 | 107 | 6611 | $\begin{aligned} & 107 \\ & 107 \end{aligned}$ |
| -20 | $10 \cdot 7$ | 1.5 | 5499 | 107 | -178 |  | 3978 | 107 | 6718 | $107$ |
| - 30 | 12.2 13 | 1.5 | 5599 | 108 | -203 |  | 4085 | 108 | 6825 | 108 |
| -40 | 137 159 | 15 | 5707 | 108 | -228 |  | 4193 | 108 | 6933 | 108 |
| 3100 | 16.7 | 1.5 | 5923 | 108 | . 278 |  | 4409 | 108 | 7149 | 108 |
| $\begin{array}{r}\text {-10 } \\ \hline 10\end{array}$ | 18.9 | 15 | 6031 | 108 | . 303 |  | 4518 | 109 | 7149 | 109 |
| . 20 | $19 \cdot 7$ | 15 | 6139 | 108 | . 328 |  | 4627 | 109 | 7367 | 109 |
| - 30 | 212 | 1 | 6248 | 109 | . 353 |  | 4736 | 109 | 7476 | 109 |
| - 40 | 227 | 1.5 | 6356 | 108 | . 378 |  | 4843 | 109 | 7585 | 109 |
| - 50 | 24.2 | 1.5 | 6464 | 108 | - 493 |  | 4954 | 109 | 7694 | 109 |
| 32.00 | 258 | 15 | 6573 | 109 | $\cdot 430$ |  | 004,5062 | 108 | 7803 | 109 |

## TABLE 2.

The same for the Perpendicular to the Meridian.

|  | Perpendicular Degree. |  | Logarithms. | Diff. | Falhoms in ${ }^{11}$ | Diff. | $\left\|\begin{array}{l}\text { Log. of Fas } \\ \text { thoms in } 1^{\prime} \\ \text { or ft. in } 10^{\prime \prime}\end{array}\right\|$ | Diff. | Log. of R of Curval | $\begin{aligned} & \text { adius } \\ & \text { ure. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $30 \cdot 00$ | $60905 \cdot 1$ |  | 784,653,83 |  | 1015.085 |  | 0065.0241 |  | 6542,7764 | - 26 |
| 10 | $905 \cdot 6$ | $\cdot 5$ | 657,42 | 359 360 | . 093 | 008 | .0612 | 371 | 7800 | 36 |
| 20 | $906 \cdot 1$ | - 5 | 661,02 | 360 | -109 |  | -0983 |  | 7836 | 36 |
| 30 | 9066 | . 5 | 664,62 | 360 | -110 |  | -1354 |  | 7872 | 36 |
| 40 | - $\mathrm{S}^{907}$ \% 2 | - 5 | 668,22 | 360 | -120 |  | -1725 |  | 7908 | 36 |
| 50 31.00 | 9077 | $\cdot 5$ | 671,82- | 360 | -128 |  | - 2796 |  | 7944 | 36 |
| $31 \cdot 00$ 10 | $908 \cdot 2$ 908.7 | $\bigcirc 5$ | 675,42 | 359 | $\cdot 137$ $\cdot 145$ |  | . 2466 | 356 | 7980 8016 | 36 |
| 10 20 | 908.7 909.2 | . 5 | 679,01 682,60 | 359 | $\cdot 145$ $\cdot 153$ |  | - 2892 |  | 8016 | 36 |
| 30 | 909.7 | - 5 | 686,19 | 359 | -162 |  | . 3534 |  | 8088 | 36 |
| 8. 40 | 910.2 | -5 | - 689,78 | 359 | -170 |  | -3890 |  | 8124 | 36 |
| $\therefore 50$ | 910.7 | -5 -5 | 8.693,37 | 359 | $\cdot 178$ |  | -4246 |  | 8160 | 36 |
| 3200 | $911{ }^{1} 2$ | $)^{5}$ | \& 096,97 | 36 | -187 |  | -4605 |  | 8196 |  |

## TABLE 3.

Difference of the Meridional and Perpendicular Degrees, multiplied by the square of the sine of the Azimuth or $\overline{p-m}$. Sine ${ }^{2} A$.

| $A z$. | Lat. 30 | Diff. $10 \cdot \mathrm{Az}$ | $\left\|\begin{array}{c}\text { Diff. } \\ 10 \mathrm{Lat}\end{array}\right\|$ | Lat. 32 | $A z . A \approx$. | Lat. 30 | $\left\|\begin{array}{c}\text { Diff. } \\ 10 \\ \text { dz. }\end{array}\right\|$ | Diff 10 Lat. | Lat. $3 \stackrel{\circ}{2}^{\circ}$ | $A \approx$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | FATHOMS. | 00 |  |  |  | Fathoms. |  |  |  |  |
| 1 | $0 \cdot 1$ | 00 | 0.0 | $0 \cdot 1$ | 141 | 128.0 | 0.9 | $0 \cdot 4$ | 122.8 | 41 |
| 2 | 0.4 | 01 | 0.0 | $0 \cdot 3$ | 242 | $133 \cdot 1$ | 0.9 | $0 \cdot 4$ | 127.7 | 42 |
| 3 | 0.8 | $\bigcirc$ | 00 | 0.8 | 343 | $138 \cdot 9$ | 0.9 0.9 | 0.5 | 132.7 | 43 |
| 4 | $1 \cdot 4$ | 0.1 | 0:0 | $1 \cdot 4$ | 4.44 | $143 \cdot 5$ | 0.9 | $0 \cdot 5$ | $137 \cdot 7$ | 44 |
| 5 | $2 \cdot 3$ | 0.2 | $0 \cdot 0$ | $2 \cdot 2$ | 5.45 | $148 \cdot 7$ | 0.8 | 0.5 | 142.7 | 45 |
| 6 | $3 \cdot 3$ | 09 | 0.0 | $3 \cdot 1$ | 646 | $153 \cdot 9$ | 0.8 | $0 \cdot 5$ | - $147 \cdot 7$ | 46 |
| 7 | $4 \cdot 4$ | 02 | $0 \cdot 0$ | $4 \cdot 3$ | 747 | $159 \cdot 1$ | 0.8 | 0.5 | 1527 | 47 |
| 8 | $5 \cdot 8$ | 0.2 | $0 \cdot 0$ | $5 \cdot 6$ | 8.48 | $164 \cdot 3$ | 0.8 0.8 | $0 \cdot 5$ | $157 \cdot 6$ | 48 |
| 9 | $7 \cdot 3$ | 0.9 | 00 | - 70 | 949 | $169 \cdot 4$ | 0.8 | 06 | $162 \cdot 6$ | 49 |
| 10 | 9.0 | O. 0.3 | $0 \cdot 0$ | $8 \cdot 6$ | 1050 | 174.5 | 0.8 0.8 | $0^{\prime} 6$ | $167 \cdot 5$ | 50 |
| 11 | $10 \cdot 8$ | $0 \cdot 3$ | 0.0 | 10.4 | 11.51 | 179.6 | 0.8 | $0 \cdot 6$ | 172.4 | 51 |
| 12 | $12 \cdot 8$ | $0 \cdot 4$ | 0.0 | $12 \cdot 3$ | 12.52 | . $184 \cdot 7$ | 0.8 0.8 | $0 \cdot 6$ | $177 \cdot 3$ | 52 |
| 13 | $15 \cdot 0$ | 0.4 | -0 | 14.4 | $13{ }^{19} 5$ | 189.7 | 0.8 0.8 | $0 \cdot 6$ | $182 \cdot 1$ | 53 |
| 14 | $17 \cdot 4$ | 0.4 | $0 \cdot 1$ | $16 \cdot 7$ | 14.54 | 1.94.7 | 0.8 0.8 | 0.6 | $186 \cdot 8$ | 54 |
| 15 | $19 \cdot 9$ | 0.4 | $0 \cdot 1$ | $19 \cdot 1$ | 15.55 | $199 \cdot 6$ | 0.8 | 07 | 191.5 | 55 |
| 16 | $22 \cdot 6$ | 0.5 | $0 \cdot 1$ | 21.7 | 16.56 | 204.4 |  | $0 \cdot 7$ | 196.2 | 56 |
| 17 | 2.5 .4 | 0.5 0.5 | $0 \cdot 1$ | $24 \cdot 4$ | $17\|57\|$ | $209 \cdot 2$ |  | $0 \cdot 7$ | 2008 | 57 |
| 18 | $28 \cdot 4$ | -0.5 | $0 \cdot 1$ | $27 \cdot 2$ | 18.58 | $213 \cdot 9$ | 0.7 | 0.7 | $205 \cdot 3$ | 58 |
| 19 | 31.5 | 0.5 | $0 \cdot 1$ | $30 \cdot 2$ | 19 5.9 | $218 \cdot 5$ | 0.7 | 0.7 | 209.7 | 59 |
| 90 | $34 \cdot 8$ | 0.6 | $0 \cdot 1$ | $33 \cdot 4$ | 2060 | 223.0 | 07 | 0.7 | 214.1 | 60 |
| 21 | $38 \cdot 2$ | $0 \cdot 6$ | $0 \cdot 1$ | $36 \cdot 6$ | 21.61 | $227 \cdot 5$ |  | 0.8 | 21.8 .4 | 6.1 |
| 22 | $41 \cdot 7$ | 06 06 | $0 \cdot 1$ | $40 \cdot 0$ | $\begin{array}{lll}22 & 62\end{array}$ | $231 \cdot 9$ | 0.7 .0 .7 | 0.8 | 922.6 | 62 |
| 23 | $45 \cdot 4$ | 0.6 | $0 \cdot 2$ | $43 \cdot 5$ | 2363 | $236 \cdot 1$ | .0 .7 -0.7 | 0.8 | 226.6 | 63 |
| 94 | $49 \cdot 2$ | 07. | $0 \cdot 2$ | $47 \cdot 2$ | 2464 | $240 \cdot 3$ | 0.7 0.6 | . 0.8 | $230 \cdot 6$ | 64 |
| 25 | $53 \cdot 1$ | $0 \cdot 7$ | $0 \cdot 2$ | . $50 \cdot 9$ | 2565 | $244 \cdot 3$ | 106 -06 | 0.8 | 234.4 | 65 |
| 26 | $57 \cdot 1$ |  | 0.2 | $54 \cdot 8$ | 26.66 | $248 \cdot 2$ | 0.6 | $0 \cdot 8$ | 238.2 | 66 |
| 27 | $61 \cdot 3$ | 0.7 | $0 \cdot 2$ | 588 | 27 67 | 252.0 | 0.6 0.6 | . $0 \cdot 8$ | 241.9 | 67 |
| 28: | .65.5 | 0.7 | 02 | $62 \cdot \mathrm{~S}$ | 28.68 | 2557 | 0.6 | 0.8 | $245 \cdot 4$ | 68 |
| 29 | $69 \cdot 9$ | 0.7 | $0 \cdot 2$ | $67 \cdot 0$ | 2969 | 259.2 | 0.6 0.5 | 0.9 | 248.8 | 69 |
| 30 | $74 \cdot 4$ | 0.7 | $0 \cdot 2$ | 71-3 | 3070 | $269 \cdot 6$ | 0. 5 | 0.9 | $252 \cdot 0$ | 70 |
| 31 | 78.9 |  | $0 \cdot 3$ | $75 \cdot 7$ | 31. 71 | 2659 |  | $0 \cdot 9$ | 255.2 | 71 |
| 32 | 83.5 | 0.8 0.8 | $0 \cdot 3$ | $80 \cdot 1$ | 3272 | $269 \cdot 0$ | 0.5 0.5 | $0 \cdot 9$ | -258.2 | 79 |
| 33 | 88.2 | 0.8 | $0 \cdot 3$ | $84 \cdot 6$ | 33.73 | $272 \cdot 0$ | 0.4 | $0 \cdot 9$ | $261: 0$ | 73 |
| 3.4 | 93.0 | 0.8 | 0.3 | $89 \cdot 2$ | -34 74 | 274.8 | 0.4 0.4 | 0.9 | $263 \cdot 7$ | 74 |
| 35 | 97. 8 | 0.8 | $0 \cdot 3$ | $93 \cdot 9$ | - 3575 | , 277-5 | 0.4 0.4 | 0.9 | $266 \cdot 3$ | 75 |
| 36 | 1027 | $0 \cdot 8$ | . 0.3 | 98.5 | 36 76 | 280.0 |  | $0 \cdot 9$ | 268.7 | 76 |
| 37 | 107.7 | 0.8 | $0 \cdot 4$ | 103:3 | 37.77 | $282 \cdot 4$ | 0.4 0.3 | 0.9 | 271 :0 | 77 |
| 38 | 112.7 | 08 | 0.4 | 108.1 | . 3878 | - $284 \cdot 6$ | 0.3 0.3 | 1:0 | $273 \cdot 1$ | 78 |
| 39 | $117 \cdot 8$ | 08 | $0 \cdot 4$ | 1130 | -39 79 | -2866 | 0.3 0.3 | 1.0 | 275.0 | 79 |
| 40 | 1229 | $0 \cdot 8$ | $0 \cdot 4$ | 1179 : | 4080 | 288.4 | 0.3 | 1.0 | $276 \cdot 8$ | 80 |

## T A BLE 3,-Continued.



## TABLE 4 <br> Spherical Excess.

| Adjacent Angle. | $\begin{gathered} 100,000 \\ \text { Feet. } \end{gathered}$ | Diff. | Logarithm, | Diff. | Aljacent Ansle. | $\begin{gathered} 100,000 \\ \text { Feet. } \end{gathered}$ | Diff. | Logarithm. | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc{ }^{\circ}{ }^{\circ}$ | - 11 |  |  |  | $\stackrel{0}{\circ}$ | " 701 | 31 |  | 174 |
| 189 | -041 | 42 | 8.6155 | 3008 | 21.69 | -791 | 30 | -8982 | 163 |
| 288 | -083 | 40 | .9163 | 1756 | 2268 | . 821 | 29 | -9145 | 151 |
| 387 | -123 | 42 | 9.0919 | 1243 | 2367 | . 850 | 29 | -9296 | 142 |
| 486 | -165 | 40 | -2169 | 1273 962 | 2466 | -879 | 27 | -9438 | 142 |
| 585 | -205 | 40 | -3124 | 782 | 2565 | -906 | 26 | -9570 | $\cdot 122$ |
| 684 | -245 | 41 | -3906 | 658 | 2664 | -932 | 25 | -9692 |  |
| 783 | -286 | 40 | - 4564 | 566 | 2763 | -957 | 25 23 | -9807 | 115 |
| 882 | -326 | 39 | - 5130 | 497 | 2862 | -980 | 22 | -9913 | 106 |
| 981 | -365 | 39 | -5627 | 440 | 2961 | 1.002 | 21 | 0.0011 | 98 |
| 1080 | -404 | 39 39 | -6067 | 440 396 | 30.60 | 1.023 | 21 20 | 0.0102 | 91 84 |
| 1179 | -443 | 38 | -6463 | 357 | 3159 | 1.043 | 20 | 0.0186 | 78 |
| 1278 | -481 |  | -6820 | 325 | 3258 | 1.063 | 18 | 0.0264 | 78 |
| 1377 | -518 | 37 | -7145 | 298 | 3357 | 1.081 | 15 | 00334 | 70 |
| 1476 | -555 | 36 | $\cdot 7443$ | 274 | 3156 | 1.096 | 15 | 00397 | 60 |
| 11575 | -591 | 35 | $\cdot 7717$ | 259 | 3555 | $1 \cdot 111$ | 13 | 0.0457 | 52 |
| 1674 | -626 |  | . 7969 |  | 3654 | $1 \cdot 124$ |  | 0.0509 |  |
| 1773 | . 661 | 35 34 | . 8203 | 234 216 | 37 <br> 83 <br> 88 | 1.136 | 11 | 00555 | 46 41 |
| 1872 1971 | -695 | 34 33 | . 8419 | 201 | 3852 3951 | $1 \cdot 147$ | 118 | 0.0596 | 41 35 |
| -1971 | . 7288 | 32 | . 8620 | 188 | 39 40 40 | 1.150 1.164 | 8 | 0.0631 0.0660 | 29 |
| 2070 | $\cdot 760$ | 31 | . 8808 | 174 | 4050 | $1 \cdot 164$ | 6 | 0.0660 | 25 |

TABLE 4,-Continued.


## TABETE

Of the Difference, of the Logantims, of the Arc and Tangent, to six places of Figures, with the length of the Are in $F$ eet, both on the Meridian and Perpendicular; and the Logarithms of the several Ares in Seconds and Feet.

| A.c. | Logarithms of " |  | Feei on the Meridian. | Logurithm. | Feet on the Perpendicular | Logarithm. | Diff.Arc <br> \& Tang. | Diff. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\bigcirc 0{ }^{\circ} 0$ | $2 \cdot 3502$ | Diff. | 24,244 | 4:3846 | -24. 361 | $4 \cdot 3867$ | 0 |  |
| 08 | $2 \cdot 6812$ |  | 48,480 | 4.6856 | 48.780 | $4 \cdot 6877$ | 1 |  |
| 12 | $2 \cdot 8573$ |  | 72,730 | $4 \cdot 8617$ | 73,080 | $4 \cdot 8638$ | 2 | 1 |
| :16 | 2.9893 |  | 97,000 | $4 \cdot 9867$ | 97,460 | 4.9888 | 3 | 1 |
| 20 | 30792 | 3 | 121,230 | 5.0896 | 121,820 | 5.0857 | 5 | 2 |
| 24 | [3.1584 | $?$ | 145,480 | 5•1628 | 146,180 | 5.1649 | 7 |  |
| 28 | 3.2953 |  | 169,710 | 5•2297 | 170.530 | 5:2318 | 10 | 2 |
| 32 | 3.2833 |  | 193,960 | 52877 | 194,900 | 5.2898 | 12 | 4 |
| 36 | 3. 3344 |  | 218,170 | 5.3938 | - 219,230 | $5 \cdot 3409$ | 16 |  |
| 40 | 33802 | res | 242,440 | 5.3846 | 243,620 | $5 \cdot 3867$ | 20 | 2 |
| 42 | 3.4014 |  | 251,570 | 5:4058 | 255,800 | 5-4079 | 22 |  |
| 44 | 3.4216 |  | 266,600 : | 5.4260 | 268,000 | $5 \cdot 4281$ | 24 | 2 |
| 46 | 34409 |  | 278,810 | 5.4453 | 280,200 | 5.4474 | 26 | 2 |
| 48 | 3.459 .4 |  | 290,900 | 5.4638 | 292,350 | 5.4659 | 28 | 2 |
| 50 | $3 \cdot 4871$ |  | 303,020 | 5:4815 | 301,510 | $5 \cdot 4836$ | 31 | 3 2 |
| 52 | $3 \cdot 4941$ |  | 315,210 | 5:4986 | 316;\%40 | $5 \cdot 5007$ | 33 |  |
| 54 | 3-5105 |  | 327,270 | 5.5149 | -328,860 | 55170 | 36 |  |
| 56 | $3 \cdot 5263$ |  | 339,400 | -5.5307 | 341,040 | $5 \cdot 5328$ | 38 |  |
| 58 | 3.5416 |  | 351,570 | 5.5460 | 353,270 | 5.5481 | 41 |  |
| 1.00 | 3.5563 |  | 363,6,70 | 55607 | 365,4,40 | $5 \cdot 5698$ | 44 | 3 |
| 02 | 9.5705 |  | 375,760 | -5.5749 | -377,530 | 5. 5770 | 47 |  |
| 04 | 3. 5843 |  | 387,890 | 5.5887 | 389,770 | $5 \cdot 5908$ | 50 | 3 |
| 06 | 3.5977 |  | 400,400 | 5.6021 | 401,970 | 5.6042 | 53 | 3 |
| 08 | 36107 |  | 412,200 | 56151 | , 414,200 | 5.6179 | 57 | 4 |
| 10 | 3.6232 |  | 424,230 | $5 \cdot 6276$ | , 426,300. | 56297 | 60 | $\stackrel{3}{3}$ |
| 12 | 9.6355 |  | 436,420 | $5 \cdot 6399$ | 438,540 | $5 \cdot 6430$ | 63 |  |
| 14 | 3.6474 |  | 448,540 | . 56518 | 450,720 | $5 \cdot 6539$ | 67 | 4 |
| 16 | 3. 6.689 |  | 460,7,00 | 5.6634 | 462,920 | 5. 6055 | 71 | $\stackrel{4}{3}$ |
| 18 | $3 \cdot 6702$ |  | 472,720 | 5.6746 | 475,010 | 56767 | 74 | 4 |
| 20 | $3 \cdot 6812$ |  | 484,850 | $5 \cdot 6850$ | 487,200 | $5 \cdot 6877$ | 78 | 4 |
| -29 | $3 \cdot 6919$ |  | 497,050 | 5.8964 | 499,460 | $5 \cdot 6985$ | 82 |  |
| 24 | 3.7094 |  | 509,100 | 57068 | 511,700 | 5.7090 | 86 | 4 |
| 26 | 3.7126 |  | 521,200 | 57170 | 523,700 | 5.7191 | 91 | 4 |
| 98 | 3.7226 |  | 533,400 | 5.3270 | 535,900 | 5.7991 | 95 | 4 |
| 30 | $3 \cdot 7324$ |  | 545,500 | $5 \cdot 7368$ | 548,100 | $5 \cdot 7389$ | 99 | 4 |

TABIE 5,-Continued.

| Arc. | Logarith | of " | Feet on the Meridian. | Logarithm. | Feet on the Perpendicular | Logarilhm. | Diff.Arc \& Tang. | Diff |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 132 | $3 \cdot 7419$ | Diff. | 557,600 | 5•7463 | 560,300 | 5•748 ${ }^{1}$ | 104 |  |
| 34 | $3 \cdot 7519$ |  | 569,800 | $5 \cdot 7557$ | 572,500 | 5.7578 | 108 | 4 |
| 36 | 3.7604 |  | 581,900 | $5 \cdot 7648$ | 584,600 | $5 \cdot 7669$ | 113 | 5 |
| 38 | $3 \cdot 7694$ |  | 594,100 | 57738 | 596,900 | $5 \cdot 7759$ | 118 | 4 |
| 40 | $3 \cdot 7781$ |  | 606,100 | 5.7825 | 609,000 | $5 \cdot 7846$ | 122 | 5 |
| 42 | 3.7867 |  | 618,200 | 5'7911 | 621,100 | 5'7932 | 127 | 5 |
| 44 | 3.7952 |  | 630,400 | $5 \cdot 7996$ | 633,400 | 5.8017 | 132 | 6 |
| 46 | 38034 |  | 642,400 | $5 \cdot 8078$ | 645,500 | $5 \cdot 8099$ | 138 | 5 |
| 48 | $3 \cdot 8116$ |  | 654,700 | $5 \cdot 8160$ | 657,800 | 5•8181 | 143 | 5 |
| 50 | 3.8195 |  | 666,600 | 5.8239 | 669,900 | $5 \cdot 8260$ | 148 | 6 |
| 52 | 3.8274 |  | 678,900 | - 5.8318 | 682,200 | 5.8339 | 154 | 5 |
| 54 | 3.8350 |  | 690,900 | 5.8394 | 694,200 | $5 \cdot 8415$ | 159 | 6 |
| 56 | $3 \cdot 8426$ |  | 703,100 | $5 \cdot 8470$ | 706,500 | $5 \cdot 8491$ | 165 | 6 |
| 58 | 3.8500 |  | 715,200 | $5 \cdot 8544$ | 718,600 | 5.8565 | 171 | 5 |
| 200 | 3.8573 |  | 727,300 | 5.8617 | 730,800 | $5 \cdot 8638$ | 176 | 3 |
| 01 | 3.8609 |  | 1733,300 | $5 \cdot 8653$ | $736,900{ }^{\circ}$ | 5.8674 | 179 |  |
| 02 | 3.8645 |  | 739,400 | $5 \cdot 8689$ | 743,100 | 5.8710 | 182 | 3 |
| 03 | 3.8680 |  | 745,400 | 5.8724 | 749,040 | $5 \cdot 8745$ | 185 | 3 |
| 04 | 38716 |  | 751,700 | 5.8760 | 755,300 | 5.8781 | 188 | 3 |
| 05 | 3.8751 |  | 757,700 | 5.8795 | 761,400 | 5.8816 | 191 | 3 |
| 06 | $3 \cdot 8785$ |  | 763,700 | $5 \cdot 8829$ | 767,400 | $5 \cdot 8850$ | 194 |  |
| 07 | 3.8819 |  | 769,900 | $5 \cdot 8864$ | 773,600 | 5.8885 | 198 | 4 |
| 08 | $3 \cdot 8853$ |  | 775,900 | $5 \cdot 8898$ | 779.600 | $5 \cdot 8919$ | 201 | 2 |
| 09 | 3.8887 |  | 781,800 | $5 \cdot 8931$ | 785,600 | $5 \cdot 8959$ | 203 | 4 |
| 10 | 38921 |  | 787,900 | 5•8965 | 791,800 | 5.3986 | 207 | 4 3 |
| 11 | 3.8954 |  | 794,000 | $5 \cdot 8998$ | 797,800 | $5 \cdot 9019$ | 210 |  |
| 12 | 3.8987 |  | 800,000 | $5 \cdot 9031$ | 803,900 | 5.9052 | 213 | 4 |
| 13 | $3 \cdot 9020$ |  | 806,100 | 5.9064 | 810,000 | $5 \cdot 9085$ | 217 ! | 4 |
| 14 | $3 \cdot 0059$ |  | 812,300 | $5 \cdot 9097$ | 816,300 | 5.9118 | 220 | 3 |
| 15 | 3.9085 |  | 818,300 | 5.9129 | 822,300 | 5.9150 | 223 | 3 4 |
| 16 | 3.9117 |  | 824,300 | 5.9161 | 828,300 | 5.9182 | 227 |  |
| 17 | 3.9149 |  | 830,400 | $5 \cdot 9193$ | 834,400 | 5.8214 | 230 | +3 |
| 18 | 3.9180 |  | 836,400 | $5 \cdot 9224$ | 840,400 | $5 \cdot 3245$ | 233 | 3 +4 |
| 19 | 9.0212 |  | i. |  |  |  | 237 | 4 3 |
| $20^{*}$ | 3.9243 |  |  |  |  |  | 240 | 3 |

TABLE 6

Of the distance in Feet between the points of intersection of the Verticals, with the Polar Axis, for a given difference of Latitude.

| Difference of Latitude. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Laxt. | $10^{11}$ | 20 | 30 | $40^{\prime \prime}$ | 50 | 60 | 70 | 80 | $90^{\prime \prime}$ | $100^{\prime \prime}$ | $110^{\prime \prime}$ | 1201 | $130^{\prime \prime}$ |
| 0 <br> 30 <br> 32 | $5 \cdot 6$ 5.5 | 11.2 10.9 | 16.7 16.4 | 22.3 21.9 | 27.9 974 | $33 \cdot 5$ $32 \cdot 8$ | $39 \cdot 1$ $38 \cdot 3$ | $44 \cdot 6$ $43 \cdot 8$ | $50 \cdot 2$ 49.2 | $5.5 \cdot 8$ 54.7 | $61 \cdot 4$ 60.2 | $67 \cdot 0$ $65 \cdot 6$ | 79.5 71.1 |

$$
\text { TABLE } 7_{2}
$$

Of the Spheroidal Correction of Latitude.

| Argument, Diference of Latitude. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 200 | 30 | 40 | 50 | 60 | $70^{\circ}$ | 80 | $90 \%$ | $100^{\circ}$ | 110 | $120^{\prime}$ | 130 |
| .$^{\circ}$ | .1 | .$^{17}$ | .$^{\prime \prime}$ | . 2 | ${ }^{3}$ | ${ }^{3}$ | .$^{4}$ | 4 | . 5 " | $\cdot 5^{\prime \prime}$ | . 6 | . 6 |

TABLE. 8.

Of the Factor for difference of Latitude, of the ends of a Perpendicular.

| Latitude. | Logarithns of Factor | Latitude. | Logarithm of Factor. | Latitude. | Lagaxithm of Factor. | Latitnde. | Logarithm of Factor. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\circ}{30.00}$ | 0.1330 | $\stackrel{0}{00} 3$ | 0.1423 | $3{ }^{\circ} \mathrm{O} .02{ }^{\text {a }}$ | $0 \cdot 1509$ | $\stackrel{\circ}{\circ} \cdot 3.3{ }^{\text {c }}$ | $0 \cdot 1594$ |
| . 02 | -1335 | -34 | $\cdot 1429$ | $\cdot 04$ | $\cdot 1.515$ | -34 | -1600 |
| . 04 | -1342 | -36 | -1434 | -06 | -1520 | -36 | -1606 |
| -06 | -1347 | -98 | $\cdot 1440$ | -08 | -1526 | -38 | -1611 |
| $\cdot 08$ | -1353 | -40 | $\cdot 1446$ | $\cdot 10$ | $\cdot 1531$ | -40 | -1617 |
| -10 | -1359 |  |  |  |  |  |  |
|  |  | $\begin{array}{r}30.49 \\ .44 \\ \hline\end{array}$ | $\cdot 1452$ $\cdot 1457$ | $\begin{array}{r}31.12 \\ \cdot 14 \\ \hline 14\end{array}$ | $\begin{array}{r}+ \\ \cdot \\ \cdot 1543 \\ \hline 159\end{array}$ | 31.42 .44 | $\cdot 1622$ $\cdot 1628$ |
| $30 \cdot 12$ $\cdot 14$ | $\cdot 1365$. $\cdot 1371$ | . 44 | -1457 | $\cdot 14$ $\cdot 16$ | $\begin{array}{r}\cdot 1543 \\ \cdot 1549 \\ \hline\end{array}$ | .44 .46 | -1628 |
| $\cdot 16$ | -1376 | -48 | $\cdot 1469$ | -18 | -1.554 | $\cdot 48$ | -1639 |
| -18 | -1382 | $\cdot 50$ | -1474 | -20 | -1560 | $\cdot 50$ | $\cdot 1645$ |
| . 20 | -1388 | 30.52 | -1480 | 31.22 | -1.566 | $\cdot 52$ | $\cdot 1650$ |
| $30 \cdot 22$ | -1394 | $30 \cdot 52$ .54 | $\cdot 1486$ | . 24 | -1572 | $\cdot 54$ | -1656 |
| $\cdot 24$ | -1440 | - 56 | -1492 | -26 | -1577 | -56 | -1662 |
| $\cdot 26$ | -1405 | . 58 | -1497 | -28 | -1583 | . 58 | $\cdot 1667$ |
| $\cdot 28$ | -1411 | 3.100 | -1.503 | -30 | -1588 | 32.00 | -1672 |
| $\cdot 30$ | $\cdot 1417$ |  |  |  |  |  |  |

voz. XIV.

$$
{ }^{2} \mathbb{T} \mathbb{B} \mathbb{L} \mathbb{E} 9
$$

Of the Factor $\frac{\mu^{2}}{E p^{2}} \mathbb{R}^{\prime \prime 2}$

|  | $\begin{gathered} \text { Feet. } \\ 100000 \end{gathered}$ | $\begin{gathered} \text { Feet. } \\ 200000 \end{gathered}$ | Feet. 300000 | $\begin{aligned} & \text { Feet. } \\ & 400000 \end{aligned}$ | $\begin{gathered} \text { Fcet. } \\ 500000 \end{gathered}$ | Feet. 600000 | Feet. 700000 | Feet. 800000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LLog. of Factor. | 4.760 | 5•362 | $5 \cdot 714$ | 5.864 | 6.158 | 6.316 | $6 \cdot 450$ | $6 \cdot 566$ |

## TABLE 10.

Of the number of Feet in $1^{\prime \prime}$ of Longitude with the Logarithms.

| Lat. | Feet in 1 | Logarithm. | Lat. | Feet in " | Logarithm. | Lat. | Feet in i | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\circ}{30.00}$ | $\begin{aligned} & \text { Feet. } \\ & 87.91 \end{aligned}$ | 1•944,033 | $\stackrel{\circ}{\circ} \mathrm{O}$ | $\begin{aligned} & \text { Feet. } \\ & 87.54 \end{aligned}$ | 1.949,202 | $3{ }^{\circ}$ | Feet. 87.17 | 1-940,344 |
| $\cdot 01$ | .89 | -943,960 | $\cdot 26$ | . 52 | $\cdot 942,128$ | $\cdot 51$ | $\cdot 15$ | $\cdot 940,269$ |
| . 02 | -88 | -943,887 | $\cdot 27$ | - 51 | -912,054 | $\cdot 52$ | -14 | -940,194 |
| .03 | -86 | -943,815 | -28 | -50 | -911,980 | -53 | $\cdot 12$ | $\cdot 940,118$ |
| -04 | -85 | -943,742 | -29 | -49 | $\cdot 941,906$ | - 54 | $\cdot 11$ | . 040,043 |
| . 05 | . 84 | -043,669 | -30 | $\cdot 47$ | -941,833 | - 55 | , 09 | -939,968 |
| - 06 | . 82 | -943,596 | $\cdot 31$ | $\cdot 45$ | -941,759 | $\cdot 56$ | $\cdot 07$ | -939,892 |
| .07 | -81 | $\cdot 943,523$ | -32 | -44 | -941,685 | . 57 | -06 | $\cdot 939,817$ |
| . 08 | $\cdot 79$ | -943,450 | $\cdot 33$ | -42 | -941,610 | -58 | $\cdot 0.5$ | -939,742 |
| . 09 | . 78 | .943,377 | -34 | $\cdot 41$ | -941,536 | $\cdot 59$ | . 03 | -939,567 |
| -10 | $\cdot 76$ | -943,305 | . 3.5 | -39 | -911,462 | 31.00 | :02 | -939,592 |
| . 11 | .75 | -949,232 | $\cdot 36$ | $\cdot 38$ | -941,388 | $\cdot 01$ | $\cdot 00$ | -939,516 ${ }^{\circ}$ |
| -12 | .73 | $\cdot 943,159$ | $\cdot 37$ | -36 | -941,313 | ${ }^{-} 02$ | 8698 | -939,4\% |
| -13 | .72 | -943,086 | -38 | $\cdot 35$ | -941,239 | -03 | $\cdot 97$ | -939,364 |
| $\cdot 14$ | 70 | -943,013 | -39 | -93 | $\cdot 941,165$ | . 04 | .95 | -939,288 |
| $\cdot 15$ | -69 | -912, 10 | $\cdot 40$ | -32 | -941,091 | -05 | 98 | -939,212 |
| -16 | $\cdot 67$ | -942,867 | $\cdot 41$ | . 31 | -941,016 | -06 | . 32 | - 939.136 |
| $\cdot 17$ | -66 | $\cdot 942,794$ | $\cdot 42$ | -29 | -940,948 | $\cdot 07$ | $\cdot 91$ | -939,060 |
| -18 | -64 | -942,720 | $\cdot 43$ | 27 | -940,867 | . 08 | -89 | $\cdot 938,984$ |
| -19 | -63 | $\cdot 942,647$ | $\cdot 44$ | . 26 | -940;792 | -09 | $\cdot 88$ | -938,908 |
| -20 | -61 | -942,572 | -45 | 21 | -940,717 | $\cdot 10$ | *66 | -938,832 |
| . 21 | $\cdot 60$ | -942,498 | $\cdot 46$ | :23 | -940,619 | $\cdot 11$ | . 85 | -938,756 |
| -22 | -58 | -942,424 | $\cdot 47$ | . 21 | -940,568 | $\cdot 12$ | 83 | -938,680 |
| -23 | - 57 | -942,350 | -48 | -20 | $\cdot 940,493$ | $\cdot 13$ | -82 | $\cdot \cdot 938,603$ |
| $\cdot 24$ | $\cdot 55$ | -942,276 | $\cdot 49$ | -18 | $\cdot 910,418$ | $\cdot 14$ | . 80 | $\cdot \cdot 938,527$ |

T1 A B L E 10.-Continued.

| Latitude. | Feet in $1^{\prime \prime}$ | Loggerithms. | Latitude. | Feet in | Logarithm. | Latitude, | Fcet ${ }^{\text {an }}$ | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 31.15 | 86.79 | 1.838,451 | 31.30 | 86.56 | 1.937,301 | $\stackrel{0}{21} \cdot 4{ }^{1}$ | $86 \cdot 33$ | 1.936,139 |
| $\cdot 16$ | 8.77 | 1938,374 | -31 | - 51 | -937,224 | $\cdot 46$ | -31 | $\cdot 936,061$ |
| $\cdot 17$ | 45 | -938,298 | -32 | - 53 | -937, 147 | -47 | $\cdot 29$ | -935,983 |
| -18 | :74 | -938,222 | - 33 | - 51 | -937,059 | -48 | . 28 | -935,905 |
| $\cdot 19$ | 0.76 | -938, 1.45 | -34 | - 50 | $\cdot 936,992$ | - 49 | -26 | $\cdot 935,827$ |
| -20 | $\cdot 71$ | -938,069 | -35 | -48 | -936,915 | - 50 | -25 | -335,749 |
| . 21 | $\cdot 70$ | -937,992 | -36 | -46 | -936,838 | . 51 | -23 | $\cdot 935,671$ |
| -22 | -68 | -937,915 | -37 | ; 45 | $\cdot 936,760$ | :52 | -22 | -935,599 |
| .23 | -66 | -937,839 | -38 | -43 | -936,683 | $\cdot 53$ | $\cdot 20$ | -935,514 |
| .24 | :65 | - $08.87,762$ | -39 | -42 | -936,606 | $\bigcirc 54$ | -19 | -935,436 |
| -25 | -63 | +937,685 | -40 | -40 | -930,528 | . 55 | $\cdot 17$ | -935,357 |
| -26 | -62 | - 037,608 | -41 | -39 | -936,450 | - 56 | $\cdot 16$ | -935,279 |
| -27. | -60. | $\bigcirc \cdot 937,532$ | - 42 | 47 | - 936,37:3 | $\cdot 57$ | -14 | -935,201 |
| -28 | $\cdot 59$ | -937,455 | - 43 | -36 | -936,295 | - 58 | -12 | -935,122 |
| . 29 | $\cdot 57$ | -937,978 | 1 :47 | $\cdot 31$ | $\cdot 936,217$ | $\cdot 59$ | $\cdot 11$ | -935,044 |

## "TABLE H.

Of the Correction of the Longitude found by the preceding.

| $\left\{\begin{array}{l} \text { Approxi- } \\ \text { mate } \\ \text { Lon xitude } \end{array}\right.$ | Correction. | Approxi- <br> mate <br> Longitude | Correction. | $\left\lvert\, \begin{gathered} \text { Approxi- } \\ \text { mate } \\ \text { Longitude } \end{gathered}\right.$ | Correction. | $\|$Approxi- <br> mote <br> Longitude | Correc. tion. | Approximate Longitude | Correction. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1800^{\circ 1}$ | $0 \cdot 0$ | $4200^{\prime \prime}$ | $0.6{ }^{11}$ | $5700^{\prime \prime}$ | $1 \cdot 4^{\prime \prime}$ | $6480^{81}$ | $2 \cdot 1^{\prime \prime}$ | 7080 | $2 \cdot 3$ |
| 2400 | $0 \cdot 1$ | 4500 | 0.7 | 6000 | 1.7 | 6600 | $2 \cdot 2$ | 7000 | 99 |
| 3000 | 0.2 | 4800 | 09 | 6120 | 1.8 | 6720 | $2 \cdot 4$ | 7320 | $3 \cdot 1$ |
| 3600 | 0.4 | . 5100 | 10 | 6240 | 19 | 6840 | $2 \cdot 5$ | 7410 | $3 \cdot 2$ |
| 3900 | 0.5 | . 5400 | 12 | 6360 | 20 | 6960 | 26 | 7560 | $3 \cdot 4$ |

## T A BLE 12.

Of the Factor (Logarithmic) for finding differences of Azimuth.

| - Latitude. | Logarith.m. | Latitrode. | Logarithm: | Latitude. | Logarithm. | Latitude: | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $30^{\circ} 0.00^{\circ}$ | 7.7549 | 30.0. | 7.7564 | $3{ }^{\circ} 10$ | 7.7578 | $3{ }^{\circ} 1.5$ | 7.7593 |
| . 01 | . 7552 | -06 | 7567 | $\cdot 11$ | $\cdot 7581$ | -16 | $\cdot 7596$ |
| -02 | . 7555 | $\because 07$ | . 78.70 | $\cdot 12$ | $\cdot 7581$ | $\cdot 17$ | -7599 |
| -09 | $\cdot 7558$ | - 08 | $\cdot 7573$ | -13 | $\cdot 7587$ | -18 | .7602 |
| - 04 | .7561 | . 09 | . 7575 | $\cdot 14$ | $\cdot 7590$ | $\cdot 19$ | $\cdot 7605$ |

TABLE 12,-Continued.

| Latitude. | Logarithm | Latitude. | Logaritam. | Latitude. | Logarithm. | Latitude. | Logarithm. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3{ }^{\circ} \mathrm{O} 20^{\circ}$ | 7-7607 | $\stackrel{\circ}{\circ} \cdot{ }^{\circ} 4{ }^{\text {a }}$ | 77680 | $3{ }^{\circ} \cdot 10$ | 77751 | ${ }^{\circ} 1.35^{\prime}$ | 7.7822 |
| .21 | -7610 | - 46 | $\cdot 7683$ | -11 | . 7754 | $\cdot 36$ | . 7825 |
| -22 | $\cdot 7613$ | $\cdot 47$ | $\cdot 7686$ | -1.2 | -775\% | -37 | .7828 |
| -23 | $\cdot 7616$ | -48 | $\cdot 7688$ | $\cdot 13$ | -7760 | -38 | -7831 |
| -24 | -7619 | -49 | 7691 | $\cdot 14$ | -7763 | -39 | -7833 |
| -25 | $\cdot 7622$ | $30 \cdot 50$ | -7694 | $\cdot 15$ | $\cdot 7766$ | -40 | -7838 |
| . 28 | $\cdot 7625$ | . 51 | $\cdot 7697$ | -16 | $\cdot 7768$ | $\bullet 41$ | -7839 |
| -27 | $\cdot 7628$ | $\cdot 52$ | -7700 | -17 | -7771 | -42 | -7842 |
| . 28 | $\cdot 7631$ | -53 | -7703 | -18 | -7773 | $\cdot 43$ | -7845 |
| . 28 | . 7634 | $\cdot 54$ | -7705 | $\cdot 19$ | $\cdot 77 \% 7$ | $\cdot 44$ | -7848 |
| -30 | -7636 | - 55 | .7708 | -20 | . 7780 | -45 | . 7850 |
| -31 | -7639 | -56 | -7711 | -21 | -7782 | $\cdot 46$ | $\cdot 7853$ |
| -32 | -7642 | - 57 | $\cdot 7714{ }^{1}$ | . 22 | .7785 | $\cdot 47$ | -7858. |
| -39 | -7645 | -58 | $\cdot 7717$ | -23 | . 7788 | $\cdot 48$ | $\cdot 7859$ |
| - 3 2 ${ }^{\text {c }}$ | -7648 | -59 | . 7720 | -24 | -7791 | -49 | .7862 |
| . 35 | -7651 | 31.00 | -7723 | -25 | .7794 | $\cdot 53$ | .7864. |
| -36 | $\cdot 7654$ | . $0_{1}$ | $\cdot 7726$ | -26 | -7796 | $\cdot 51$ | -7867 |
| -37 | $\cdot 7657$ | -09 | -7728 | -27 | -7799 | -52 | -7870 |
| -38 | -7660 | $\cdot 03$ | $\cdot 7731$ | -28 | -7802 | - 53 | $\cdot 7873$ |
| -39 | $\cdot 7662$ | $\cdot 04$ | .7734 | -29 | -7805 | $\cdot 54$ | -7876 |
| -40 | 7665 | - 05 | $\cdot 7737$ | $\cdot 30$ | -7808 | $\cdot 55$ | $\cdot 7878$ |
| .41 | $\cdot 7688$ | $\cdot 06$ | . 7740 | $\cdot 31$ | $\cdot 7811$ | $\cdot 56$ | $\cdot 7881$ |
| . 42 | $\cdot 7671$ | $\cdot 07$ | $\cdot 7743$ | -39 | $\cdot 7814$ | - 57 | $\cdot 7884$ |
| . 43 | . 7674 | . 08 | $\cdot 7746$ | - 33 | $\cdot 7816$ | - 58 | -7887. |
| . 44 | $\cdot 7677$ | $\cdot 09$ | $\cdot 7748$ | -34 | 7819 | $\cdot 59$ | . 7890 |

Use of the preceeding Tables.

TABLI.

Thrs contains the length of the degree in fathoms with the logarithms, also of the minute and its logarithm. As the number of feet in is the same with the number of fathoms in 1 , divided by 10 , it is evident the logarithm will be the same, with the exception of the index, which must be one less. For turning feet into seconds, the logarithms in column 7 may be used.

## TABLE 2.

Requires no explanation, being the same as the preceding:

## TABLE 3.

Is the difference of the meridional and perpendicular degrees, multiplied by the square of the sine of the Azimuth or $(p-m)$. Sine ${ }^{\prime 2} A$. These numbers are useful in finding readily the value of the oblique degree, sometimes required to reduce arcs in feet to the angle formed by the verticals. Hurton's expression taken from the 2d vol. Trig. survey is for the oblique degree

$$
\frac{p m}{d=p+(m-p) \text { Sine }^{2} a .} a \text { being the Asimuth, and } p m
$$ the perpendicular, and meridional degrees. This being expanded into series is equal to

$$
m+\frac{x^{m}}{p}+\frac{x^{2} m}{p}+\frac{x^{2} m}{p} \& \mathrm{c}_{.} \text {being }=(p-m) . \text { Sine }^{2}{ }_{c}
$$

Now' as the correction is small and $m p$ are nearly equal, and extreme accuracy not required in the case in question, we may take the above as equal to, for practical purposes,

$$
m+(p-m) \text { Sine }^{2} A
$$

The table gives the correction $(p-m)$ Sine ${ }^{2} A$, which is to be added to the degree of latitude, in order to have the oblique degree.

$$
\mathrm{T} A B \mathbb{E} \cdot 4
$$

Is the spherical excess, that is the sum above $180^{\circ}$, which the three angles of a small spherical triangle amount to.

The arguments are the two sides and adjacent angles. VOL. XIV.

## EXAMPLE.

Given a triangle having two of its sides $=227,000$ and 300,000 feet, and its angles (adjacent to the two sides) $52^{\circ}$ and $36^{\circ}$. Required the excess of the three angles above 180?

| Table No. to $52^{\circ}=$ | $1 \cdot 147$ | to $36^{\circ}=$ | -772' |
| :---: | :---: | :---: | :---: |
| Multiplier to side 227,000 | $5 \cdot 2$ | 300,000 | 9 |
| I | $5 \cdot 735$ |  | $6 \cdot 948$ |
|  | 2.294 |  |  |
| 1st part, | 5.96 |  |  |
| 2 d part, | 6.95 |  |  |
|  | 12.9 | ical excess. |  |

As the two angles are acute, both parts of the spherical excess are positive, but if one of the angles be obtuse the part answering to it will be negative. When the angle is not to be found in the table, it's supplement is to be taken.

TABLE 5.

The difference of the logarithms of the arc and tangent, for probable distances within the survey. It also serves to find the sines.

## EXAMPLE.

What is the tangent to the arc measuring 345,000 feet in length expressed in feet. Also find it's sine. The distance being taken in the direction of the meridian.

| Log. $\quad 345,000$ | For the Tangent. <br> $5 \cdot 537,819$ | For the Sine. <br> $5 \cdot 537,819$ |
| :--- | :--- | :--- |
| Table No. | $\frac{0 \cdot+000,039}{}$ | $-.000,020=\frac{1}{2}$ Tab. No. |
| Log. tangent, | $\frac{5 \cdot 537,858}{}$ Log. sine, | $.537,799$ |

The seconds and their logarithms, also the logarithm of the arcs in feet being given, render the table, much more convenient in use.

$$
\text { TABLE } 6 \text {. }
$$

This table requires no explanation.

TABLE \%.
Contarns the spheroidal correction of latitude, it's use is evident.

## TABLE 8.

Contans the logarithmic factor, for finding the difference of latitude of the two ends of a perpendicular arc.

## EXAMPLE.

Given the length of an arc perpendicular to the meridian $=400,000$ feet, and the latitude of one end $30^{\circ} 53^{\circ} 00^{\circ}$. Required the latitude of the other end?

$$
\text { Log. of } 400,000 \quad 5 \cdot 6020
$$

Squared, 12040
Log. from table $30^{\circ} 5 \dot{3}^{\circ}$
$0 \cdot 1483$
$22^{2.5}=1.3523$
305300
305237.5 Latitude required.

The results found from this table may be corrected by applying the numbers from the preceeding, although it may admit of doubt if in a survey of this description, any quantity much below i be worth regarding,

TABLE 9 。

Contans the logarithmic factor for correcting the preceding result, though the operation of this correction be far too feeble to deserve being altended to. It is less than that given in Table 7. The logarithm in the table is to be added to the logarithn of the correction found by the preceding, the sum is the logarithm of the correction. It may be however always neglected, and I have only given the table to shew how safely,

$$
\text { TABLE } 10 .
$$

Contars the factor natural and logarithmic for reducing distances on the perpendicular in feet, to their corresponding differences of longitude.

## EXAMPLE.

Given the length of an arc perpendicular to the meridian $=400,000$ feet. Required the difference of longitude of its two extremities?

$$
\mathrm{Log} \text { of } 400,000 \quad 5 \cdot 602,060
$$

$$
\text { Factor to } 3023 \quad 1 \cdot 242,350
$$

$$
456 \% \cdot 9=3 \cdot 659 \cdot \% 10
$$

Is the difference of longitude required, but it must be corrected by.

$$
\mathbb{T} \mathrm{ABLE} 11 .
$$

Thus, approximate longitude, ... $456 \% \cdot 9$
Correction to, :......e.....:-7
True difference, ......... 4567.2

## TABLE 12.

Contans the logarithmic factor, for finding the differeace of Azimuth of the two ends of a perpeadicular arc.

## EXAMPLE:

Let the length of a perpendicular to the meridiau be 375,000 feet, and the latitude of the right angle $3 i^{\circ} 0 \%$. Required the difference of Azimuth of its two extremities?

$$
\begin{array}{cc}
\text { Log. of } 375,000 & 5: 5740 \\
\text { Factor to } 31^{\circ} 07^{\prime}, & 7 \cdot 7743
\end{array}
$$

Difference of Azimuth roquired 22 2. $30=3 \cdot 3483$

If this difference were greater it might be necessary to correct it by Table 11, as in the case of the longitude, but unless the correction amounted to a few seconds it is hardly worth attending to, particularly as Azimuths are not easy to be observed with great precision.

It is to be noted, that though these two tables give the correct difference of Asimuth of the two ends of the perpendicular, yet that this is not always the difference answering to the two ends of the corresponding oblique arc, because it is evident, that where the arcs are large there will be a considerable spherical excess, and this must be taken into consideration always.
vol. xiv.
4 Z
-

Febriuary, 1819.








Continuation of the Measurement of the Base,-Felruary, 1819.


## VII.

## On the ancient Geosraplay of India.

By Lieut. Cor. F. Wilford.

## INTRODUCTORY REMARKS.

A
FEW years after my arrival in India, I began to study the ancient history, and geography of that country; and of course, endeavoured to procure some regular works on the subject : the attempt proved vain, though I spared neither trouble, nor money, and I had given up every hope, when, most unexpectedly, and through mere chance, several geographical tracts in Sanscrit, fell into my hands. I very much regret, that they did not make their appearance somewhat earlier; for time passes away heedless of our favourite pursuits.

In some of the Puránas, there is a section called the Bhuvana-cośa, a magazine, or collection of mansions: but these are entirely mythological, and beneath our notice. Besides those in the Puraíás, there are other geographical tracts, to several of which is given the tille of Cshétra-samása, or collection of countries; one is entirely mythological, and is highly esteemed by the Jainus; another in my possession, is entirely geographical, and is a most valuable work. There is also the Trai-locya-derpana, or vol. xiv. 5 C
mirror of the three worlds: but it is wholly mythological, and written in the spoken dialects of the countries about Milutra. St. Patrick is supposed to have written such a book, which is entitled de tribus Habitaculis, and this was also entirely mythological.

There are also lists of countries, rivers and mountains, in several Purásías, and other books; but they are of little or no use, being mere lists of names, without any explanation whatever. They are very incorrectly written, and the context can be of no service, in correcting the bad spelling of proper names. These in general are called Déśámálá, or garlands of countries; and are of great antiquity: they appear to have been known to Megastuenes, and aferwards to Pliny.*,

Real geographical treatises do exist: but they are very scarce, and the owners unwilling, either to part with them, or to allow any copy to be made, particularly for strangers. For they say, that it highly improper, to impart any knowledge of the state of their country, to foreigners; and they consider these geographical works as copies of the archives of

[^48]the government of their country.: Seven of them have come to my knowledge, three of which are in my possession. The two oldest are the Munja-prati-dés'ád-vyavasthá, or an account of various countries, written by Raja Munja, in the latter end of the ninth century: it was revised and improved by Raja Bhova his nephew, in the beginning of the tenth, it is supposed; and this new edition was published wider the name of 13hoja-prati-déśá-vyavast'hú. These two treatises', which are voluminous, particularly the latter, are still to be fomd in Gujarat, as $\mathbf{I}$ was repeatedly assured, by a most respectable P'andit, a native of that country, "who died some years ago, in my service. I then applied to the late Mr. Duncan, Governor of Bombay, to procure these two geographical tracts, but in vain: his enquiries however confirmed their existence. These two are not mentioned in any Saisscrit book, that I ever saw, The next geographical treatise, is that written by arder of the famous Buccaráva or Bucca-sinita, who ruled in the peninsula in the year of VicraMÁditya, 1341 , answering to the year 1285 of our era. It is mentioned in the commentary on the geography of the Mahatblurata, and it is said, that he wrote an account of the 310 Ruájastoips of India, and Palibothra is mentioned in it. I suspect that this is the geographical treatise called $B$ Burana-ságara, or sea of mansions, in the Deffiin.

A passage from it, is cited by professor Sig. Baver, in which is menti-
oned the town of Nisadaburam, in the Tamil dialect, but in Sanscrit
Nahushapur, or Naushapur, from an ancient and famous king of that name,

[^49]more generally called Deva-nalusha, and Deo-maush, itn the spoken dialects. Ile appears to be the Dionysius, of our ancient mythologists, ghan reigned near mount:Meru, now Mar-coh, to the S. H. of Cabul.

Tre fourth is a commentary on the geography of the Maha-bharat, written by order of the Rajá of Paulasizy in the peninsula, by a Pandit, who resided in Bengal; in the time of Husisein-shah, who began his reign in the year 1489 . It is a voluminous work, most curious, and interesting. It is in my possession, except a small portion towards the end, and which I hope to be able to procure. Palibothra is mentioned in it.
'The fifth is the Vicrama-sagara: the author of it is unknown here: however it is often mentioned in the Cshétra-samása, which, according to the author himself, is chiefly taken from the Vicrama-ságara. It is said to exist still in the peninsula, and it existed in Bengal, in the year 1648. It is considered as á very valuable work, and Palibothra is particularly mentioned in it, according to the author of the Cshétra-samása. I haye only seventeen leaves of this work, and they are certainly interesting. Some, suppose, that it is as old as the time of Bucca-ráya, that it was written by his order, and that the author was a native of the Dekhin.

Bur the author could not be a native of that country, otherwise, he would have given a better description of it; for his account of the country about the Sahyadri mountains, of which an extract is to be found in the Cshétrctsamásä, is quite unsatisfactory, and obviously erroneous even in the general outlines. The account he gives of Trichina-valf is much better, and there he takes notice of an ancient city, which proves to be the Bata of Proxemy,
the metropolis of the Batis. Its"Sanscrit name is Vata or "Bata, so called because it was situated in the Baíarańya, or forest of the Vat' tree or Ficus Indica. Our author says, that it is two Cos from Cuttalam, called Curtalam in Major Rennele's map of India, and to the west of Tranquebar: it was a famous place formerly; but it is hardly known in the Caliyug, says our author. Close to it is Trimbálingáli-gráma. 'Two Cès to the west of Vat'áranya, is Madhyarjuna, a considerable place, and five Cos from this is Ciumbhácolam a large place also, inhabited chicfly by pot-makers; hence its name, and it is the Combaconim of the maps. The distance between Cuttálam and Cumbhácolam is nine Cos, and according to Major Rennell's maps, it is about sixteen B. miles, which is sufficiently accurate

The sixth is called the Bhuvana-cos$a$, and is declared to be à section of the Bhavishya-purána. If so, it has been revised, and many additions have been made to it, and very properly, for in its original state, it was a most contemptible performance. As the author mentions the emperor Selin-shah, who died in the year 1552, he is of course posterior to him. It is a valuable work. Additions are always incorporated into the context in India, most generaliy without reference to any authority; and it was formerly so with us; but this is no disparagement in a geographical treatise: for towns, and countries do not disappear, like historical facts, without leaving some vestiges behind. I have only the fourth part of it, which contains the Gargetick provinces. The first copy that I saw, contained only the half of what is now in my possession; but it is exactly the same with it, only that some Pandit, a native of Benares, has

$$
\text { Vồ. } \times \text { Nr. } \quad 5 . \mathrm{D}
$$

introduced a very inaccurate account of the rebellion of Chatryan-sinhas commonly called Cheyt-sing, in the year, I believe 1781: but the style is different.

The seventh is the Cshétra-samása already mentioned, and which was written by order of Bijuala, the last Rájá of Patna, who died in the year 1648. Though a modern work, yet it is nevertheless a valuable and interesting performance. It contains only the Gungetick provinces and some parts of the peninsula, such as Trichiná-vali, \&c. The death of the Rájá prevented his Pandit Jagqanmohun from finishing it, as it was intended, for the information of his children.

The last chapter, which was originally a detached work, is an account of Pátali-putra, and of Páli-bhátá as it is called there, and it consists of forty-seven leaves. This was written previously to the geographical treatise, and it gives an account, geographical, historical, and also mythological of these two cities, which were contiguous to each other. It gives also a short history of the Rajaj's family, and of his ancestors, and on that account only was this small tract originally undertaken. We may of course reasonably suppose that it was written at least 170 years ago.

The writer informs us that, long after the death of Rájá Bijuala or Baijunda, he was earnestly requested by his friends, to complete the work, or at least to arrange the materials, he had already collected, in some order, and to publish it, even in that state. He complied with their request; bet it must have been long after the death of the king, for he mentions Pondichery; saying, that it was inhabited by Firangs, and had
three pretty temples dedicated to the God of the Firangs, Feringies or French, who did not, I believe, settle there before the year 1674, He takes notice also of Mandarajja, or Madras.

The author acts with the utmost candour, and modesty, saying, as I have written the Prabihoda-chandricá after the "Pracriyáa-caumuď̆ (that " is to say from, and after the manner of that book) so I have written this " work after the Vicrama-ságara, and also from enquiries, from respect"able well informed people, and from what, I may have seen myself.".

In the Cshétra-samása, two other geographical tracts are mentioned: the first is the Dacsha-c'handaca, and the other is called Dés áa-valí, which, according to the author's account, seem to be valuable works. There is also a small geographical treatise called Crita-dhará-valú, by Rámésívara, about 200 years old, it is supposed. I have only eighty leaves of it, and it contains some very interesting particulars. In the peninsula, there is a list of fifty-six countries, in high estimation among the natives. It is generally called, in the spoken dialects of India, Cl'hapana-déśá or the fifty-six countries. It was mentioned first by Mr. Balley, who calls it Chapanna de Chalou. Two copies were possessed by Dr. Buchanan, and I have also procured a few others. All these are most contemptible lists of names, badly spelt, without any explanation whatever, and they differ materially the one from the other. However there is really a valuable copy of it, in the Tárá-tantra, and published lately by the Rev. Mr. Ward. I have also another list of countries with proper remarks, from the Gálava-tantra, in which there are several most valuable hints. However these two lists must be used cautionsly, for there are also several mistakes.

This essay on the ancient geography of the Gangetick provinces, will consist of three sections. The first will treat of the boundaries, mountains, and rivers. In the second will be described the various districts, with some account of them, as far as procurable. The third section will be a comparative essay, between the geographical accounts of these countries by Prolemy, and other ancient geographers in the west, with those of the Paurárics. Then occasionally, and collaterally will appear accounts, both historical and geographical of some of the principal towns, such as Palibothra and Pátali-putra now Patna, for these two towns were close to each other, exactly like London and Westminister.

The former was once the metropolis of India; but at a very early period it was destroyed by the Ganges: an account of it is in great forwardness, and is nearly ready for the press. Its name in Sanscrit was Páli-bhat tíá, to be pronounced Pali-bhothra, or nearly so. Bali-grím near Bhágalpur, never was the metropolis of India; yet it was a very ancient city, and its Listory is very interesting. It was also destroyed by the Ganges. Chattrapur or Chattra-gróm, was the metropolis of a district in Bengal called Gangá-Rüddha. It is now Chitpur, near Calcutta, and it was the Gangá or Gange-Regia of Prolemy. Dháccá, or rather FiringiBazar, is the Tugma of Ptolemy, the Taukhe of El-Edrissi, and the Antomela of Pliny, \&c.

Accurate copies of these Sanscrit treatises on geography, will be deposited with the Asiatich Society, and ulimately the originals themselves.

## SECTION I.

Boundaries of Anu-Gangam. Its Forests, Mountains and Rivers.

> ANU-GANGAM, signifes that country, which extends along the banks of the Ganges. The Gangetick provinces are called to this day AnonKhenk, or Anonkhek in Tibet, and Enacac, by the Tartars; and they have extended this appellation even to all India. The Ganges is called Kanlih, or Kankhis in Tibet, and Kengkia, or Hengho by the Chinese.*

Anv-Gangam, has to the north the Himálaya mountains, and to the south those of Vindhya, with the bay of Bengal: the southern boundary of Aracan, is also the limit of Anu-gangam towards the south, in that part of the country. To the west it has the river Drishadvati, now the Caggar.

Of the eastern boundary, we can at present ascertain only a few points, which however will give us the grand outlines. The Raghu-nandana mountains to the east of Arácan and of Chat ta-gram, are the boundary in the south-east: from thence it trends towards the N. E. to a place called Maïám, eight Yojanas or ṣixty miles, to the east of Manipur, which last is

[^50]voL. xiv.
5 E
upon a river called Bralum-tarír. Mairám's true Sanscrit name is Máayo rána, and is amongst hills on the river Subhadrá, which goes into the country of Baramáa according to the CsMétra-samása. The Bubhadrá is the Kayndwayn, mentioned in the account of the embassy to Ava, and it falls into the Airávati, in the Burman empire. From Mairam the boundary goes to a place called Ménatirá, near the mountains of Prabhre cuthára, which join the snowy mountains, in some place unknown. The Prablux mountains are the eastern boundary of Asam, and through them is a tremendous chasm made by Paraśu-ráma, and which gives entrance to the Reralma-putra into India.

Beyond these are the famous Udaya, or Umati mountains, or range, beyond which the sun rises.
"The Vindluyan hills extend from the bay of Bengal, to the gulf of Cambuay, and they are divided into three parts, the first or eastern part extends, from the bay of Bengal, to the source of the Narmadi, and Son a rivers inclusively, and this part contains the Ricsha, or bear mountains. To the west of this, as far as the gulf of Cambay, is the second or western part, the southern part of which is called Páriyátra, or Páripátra, and the northern part, which extends from the gates of Dilli to the gulf of Cambay, is called Raivata.

Now the third or southern portion of these lills, is simply called Findhya, and is to the south of the source of the rivers Narmorda, and Soría: the rivers Tápi or Tápti, and the Vaitarani near Cuttac rise from
the hills of Vindhya, simply so called. All the Rerecras agree, in their description of the hills and rivers of Indiat except that the Ravat hills are always omitted in this account: but they make a conspicuous figure in the history of Crüshina.

The inferipr mountains in this extensive region, are first, the Rafito mehál hills, called in Sanscrit, Sushuri: they are well described in the commentary, on the Mahá-bluárat: they are also called Cacshívat, from a tribe of Brammens of that name, settled there, and well known to the Puránás.

Then come the Chadgadri, or the rhinoceros hill, from Chadga, to be pronounced C\%arga or nearly so, the Sanscrit name of that animal; and which still remains in the names of the two districts of Curructipur, and Currucdea. They are mentioned in the Cshétra-samása. Elian observes, that in India, they gave the name of Carcason, to an animal with a single horn. This word comes from C'harga, and in the possessive case, and in a derivative form Chargasya. In Persian, this word is pronounced Kharrack and Khark.

To the S. W, of these according to the Gálava-tantra is the Gridluracuía, or the vulture peak; the hills, called Ghiddore in the maps.

Between these, and the Sona are the famous hills of Rájá-gritha, because there was the royal mansion of Jarásandia. They are called also Giri-vraja, because he had there numberless Cow-pens. Between
the Sorio, and the Ganges at Benares and Chunar, are the Mauli hilis, called also Rohitt, or the red hills, and after them the fort of Rohtas is derominated.

Berween the Sona, and the Tamasá, or Tonsa, is the extensive range of Caimur, in Sanserit, Cimmrityu, so called because it is fortunate to die* amongst them. The hills of Cálanjara, and Chitra-cút'a, or Chitra-sánu in Eaudela-c'hand; are often mentioned in the Puránas, and also in some poetical works. Beyond the Chambala are the famous hilis of Raivata, which stretch from the Yamainá, down to Gurjarát, and in a N. W. direction along the Yamuná, as far as Dilli. That part of them which lies to the west of Mat'hurá, as far north as Dilli, is called the Déva-giri hills, in the Scanda-purána, and Máya-giri, in the Bhágavat. $\dagger$. They were the abode of the famous Máva, the chief engineer of the Daityas. He makes a most conspicuous figure in the Puranas, and particularly in the Mahá-bharata. The scene of his many atchievements, and performances was about Dilli. The inhabitants of these hills calls themselves Mayas or Meyos, to this day: but by their neighbours they are denominated Meyováti, or Mevatis.

The inferior mountains in the east, are the Gára hills, in the spoken dialects Gáro, between the Brahma-putra and Silhet, along the southern boundary of Asáma. They form a very extensive range, the western paris of which are called Doránga-givi or Deran-giri, from the country they are

[^51]in; in the eastern parts they are denominated Námeripa, from the country likewisc.* To the south of Gáda or Gárgánh, are the Sáaradá hinls, mentioned in the Cálicá-puráńa: the natives call them Śaraidá, and there are the tombs of the kings of Ásáma.

There is another range of mountains to the east of Tiperal, and, which forming a curve towards the N. E. passes a little to the eastward of the country of an ancient king called Hed́amba, or Heramba. The name of the country is Cásárr, and its metropolis is Chaspur, the Cachara and Cuspoor of the maps. These hills are called Tiládri, or mountains of Tila, in the Cshétra-samása. In them and to eastward of Cására is Tiládri-máláágrám, or the village of Málú, in the hills of Tila. It is called in the spoken dialects Tilandrira-múlá, and the author of the above tract, says that it is a pretty place.

To the north of India are three ranges of mountains, Fima or snowy, is to the north of Nipála or Naya-pála; Héma or the golden mountain, is beyond Tibet, and Nishadha, is still further north. Nay-pála is between the Pádapa or foot of the mountains, and Hima. Our ancient geographers were acquainted with the two first; Hima or Imaus; and Héma, Hémada, Hemoda, or Emodus. Their information was no doubt very defective, and their ideas concerning them were of course very indistinct and confused, as appears from Ptoleny's map. That author has added an inferior range, which he calls Bepyrrlues. This range, with Imaus and

[^52]Enodus, he has disposed in the shape of the letter Y. Imaxis is the shaf, and the others make the two branches; Emodus is to the left or north, and Bepyrrhus to the right or south. Emodus beyond Tibet, is entirely out of its place here, and of course must be rejected. Bepyrithus is derived from the Sanscrit Bhima-pada, or Bhaya-páda, or the tremendous pass up, and down the mountains; literally the tremendous footings, rests for the foot, or' steps. These words' are pronounced by the Nay-pallese Bhém-phéd, or Bhim-pher, and Bhay-pled, or Bhaypher:' but in Hindee they say Bhén-païd, Bhay-païr and Bhim-pairi, Bhay-paid, or Bhaiy-pairi.

The Pairánics admit it is true, this etymological derivation of these wowds, and of Bhima-por or Bhaya-pur, the dreary mansion : but they have transferred the sensation of terror from strangers and travellers, to the inhabitants themselves, and have framed several legends accordingly. When Paraśu-ráma, undertook to destroy the Csheetris, the C"hasus, sho then lived below in the plairs, fled to the mountains, where they concealed themselves in the greatest disinay, and consternation. A vast body of them went to Valpése or the place of the lord of speech, at the foot of the hills and a little to the eastward of the ristô, to consult him, and claim his protection: "They then ascended the tremendous Gháts, according to the Cshétra-samása. In the same treatise; it is said, another body of them to the north of A'samu, ascended the hills and settled at a place called also Blíma-voti-puri, or the town replete with fear and terror, more commonly Bhím-puri and Bhom-païri, which implies that the towr pur, the valleys and passes pair or puër, at the foot of these hills, were filled with alami, aud the inhabitants still tremble at the name of Paraśmorama。 th the
commentary on the Mahá-bharat, the name of this place* is written Bhima-spluarddhá, or rather Bhimäsparddha, because Buima, having defeated, in these passes, the army of Báríasura, laughed and rejoiced. in consequence of his victory. The first etymology, I think is by far preferable. This appears to be the mount Bepyrrhus of Proleny, and its erroneous direction in his map may be rectified: Bepyrrhus, and Otorocorrha are parts of the Padapa, or foot of nount Himáloya, and ought to be connected as such, Bepyrrhus, to the west and Ottorocorrha to the east, and to the north of Asama; for the latter is only a prolongation of the former.

The country of Gáda or Guda-grama is pronounced by the natives Gorgomh; or Guer-ganh, that is to say the town of Gor, whatever be its meaining, and through the rest of Indic it is called Gor, and also by our writers of the 17 hin century. Even Proleny writes it Corrla as in Ottorowcorma. This country is generally called Ascma, and is divided into two parts Ultura, or Uttaro-gora, and Dacsina-gora, in the spoken dialects Utlem-gol, and Delwingol, that is to say, north and south Gora, In the spoken, dialcets, these two divisions, are also called Utiar-pida, and Dekisinnpada, that is to say the N. and Sidivision.

The Domasi of Prexw, implythe southern mountains, from the Sanscrit, Yámya, and Yamasya, which signify the south; because Y Y MA rules there. These words, in the spoken dialects, are pronounced famya,

[^53]and Jamasya, from which last the Greeks made Damasoi, as Diamuna for Jamumá; and when Perny says, that the Hindús called the southem parts of the world Dramasa, we should read Diamasa or Damasa. Besides, Jama; or Pluto, is supposed to reside particularly there also, hence these mountains or part of them are called Jama-dhara, which imply. either the southern mountains, or the mountains of $\boldsymbol{J}_{\text {AMs }}$, the ruler of the south, in Sanscrit. In the spoken dialects, they say Jandhera, from which Bernier made Chamdara**

Beyond Ásáma are the Prabhu-cúthára mountains, beyond which are those called Udaya, or from behind which the sun makes his appearance.

Immedintely after the mountains of $A^{\prime} s^{\prime} a^{m} a$, according io Prolemy, are those called Semarthini, which appear to be the Udaya mountains of the Paurárics, and the Unnati of lexicons. These are declared to be the Sumanta, or the very limit of the world, from which Prolemy made Semanthini. We may also say Samumati the very place of the rising of the sun; for the particle Sam is used here intensively. Samanta is found in lexicons; the other never to the best of my knowledge; still it is admissible, for it is correct and grammatical.

Let us pass to the mountains to the east of Bengal. Between that country, and Traipura, there is a range of hills, which passes close to Comillah, then all along the sea shore, and ends near Chat gánh. This

[^54]range is called Raghir-nandana in the Cshétra-samása, and in the district of Chatgánh there are two portions of it, one is called Chandra-s'éc'hara, or Chandra-giri; in this is Sitá-cundá, or the pool of Sitá, and the burning well. The other portion is called Virúpácshycs.

The mountains to the eastward of Traipura, and of Chat gainh, are mentioned in the above geographical treatise: in the northern parts they are called the Tiladri or Tailádri mountains, with several places of that name, as we have seen before. The Peguers are called also Talians, and it is possible that the Tailádri or the mountain of Tilá or Tailá may have been so called from that circumstance: for they constitute, at least in the lower parts of that range, the natural boundary between India, and the Talian country or Pegu. Between Arácan, and $A v a ́$, is the famous pass of Tállá or Tálláki.

In the Cshétra-samása the Carn'a-phulli or Chat́gánh river, is said to come from the Jayádri or mountains of victory, and the Nábhi or Náf river, from the Suvarńa or golden mountains; but these are portions only of the above range. The motmtains, as well as the country to the eastward of Trai-pura are often called Reang by the natives. When we read in Major Dow's history of Hindoostan, that Sultan Sujay fled from D'háccá to Árácan, through the almost impervious fozests and mountains of Rangámati, it is a mistake, and it should be the forests and mountains of Reang. It is not likely that, that unfortunate prince should fly from D'háccá to Rangámatio on the borders of Asáma, a great way towards the vol. xiv.
north; but it is more natural to suppose, that he darted at once into the wilds of Trai-pura and Reang.

Ptolemy has bestowed the name of Maiandrus on this range, but which is now unknown. It is probably derived from Mayan, a tribe between Chat gánh, and Arácan* according. to Dr. Buchanan. In this case Mayunádri signifies the Mayzn mountains, and the Peguers are also called Moan. $\dagger$

By a strange fatality, the northern extremity of mount Maiandrus in Prolemy's maps, is brought close to the town of Alosanga, now Ellasing on the Lojung river, to the N. W. of D'háccá. This mistake is entirely owing to his tables of longitude and latitude, which were originally erroneous, and probably have been made worse and worse by transcribers: but this may be easily rectified, by adverting to the interesting particulars, which he mentions conceming mount Maiandrus. In the upper parts of it, says he, are the Tilaidai, or the inhabitants of the Tiladri or Tilôs mountains mentioned before; these are also called Basadxe. In the Vámana-puráńa, section of the earth, the Bhasada tribes are mentioned, as living in the easternmost parts of India. Proleniy says, that the Basadoes had a short nose as if clipped, and were very hairy, with a broad chest, and a broad forehead. They were of a white colour, and I suppose like that of the Peguers, called by Persian writers, a wheat colour, and in Saisscrit Capiśa.

[^55]On one side of mount Maiandrus, according to our author, are the Nanga-loga, which, he says, signifies naked people, and this is to this day the true meaning of Nanga-loga in Hindl: their country is repeatedly called Nagna-léśa, or country of the náked in the Puránas, and they call themselves Nanctás or the naked, but this word they generally pronounce Lanctá.* •They are called also Cuci, and iṇ the Cshétrcu-samásá it is said, that the original name is Cemu, and Cemuca, which are pronounced in the dialect of that country Ceu, Ceuca or Ceuci; and Portuguese writers men. tion the country of Cu , to the eastward of Bengal.

The Vindhyan mountains are in general covered with forests called in Sanscret, Aranya or Atavi, and this last implies an inpervious wood, or nearly so. The Vindhyátavis, are often mentioned in the Puránas, and poetical works. They are divided into forest-cantons, mentioned in the lists of countries in the Puránass and in geographical works among these forest-cantons; ten are of more renown, than the others: these are to the east of the river Sońa, and are called in the above lists Daśarna; and in geographical tracts Das áranya, or the ten forests, and in every one of them is a stronghold or fort Rüńa, and Daśáría siguifies the ten forts. Another name for these forts is Uttumárria, which implies their pre-eminence, and superiority of power above the others. These ten strongholds are probably the Daśapur, or decapolis of the last section but one of the Padma-puránit, and of Cośas also. There resided ten chiefs, who availing themselves of the supineness of their neighbours below, became hill robbers, and obtained at various periods much might and honor. They were like the savage

[^56]tribes of Rájámehál, colly they acted upon a larger, and of course upon a more honorable scale.

These forests are in general called Jháti-c’hand́a, always pronounced Jhári-c'hand in the spoken dialects, which signifies a country abounding with Jhári, or places overgrown with thickets, and underwood: ${ }^{\text {•However }}$ there are many extensive forests of large and tall trees of various sorts, but under these there is no grass, and very seldom any underwood: therefore the copses are most valuable, being fit for the grazing of cattle.

These ten cantons included all the woods, hills and wilds of south Bahar, with the two districts of Suruguzá, and Gangaper in the south. We have also the Dwádaśárañya, or twelve forest-cantons, including the ten before mentioned with the addition of Bandela-c'hand and Baghelac'hand. Another name for such woods and thickets is Jhánci and Jháncar; which the natives of these forests, gencrally pronounce Dángi and Dángar, according to the Cshétra-samása, and to the natives also, who call themselves Dingayas from Bandela-c'kand, all the way to the bay of Bengal, and their country Dángaya. The other Hindus' however call the whole Jhár-chundt, and it is noticed in Dow's history of India, and in that of Bengal by Major' Stewart,* and also either by Tavernier or Bernier, but supposed by them to be a town in the vicinity of Berhampur, instead of an extensive forest. They call it Geharcunda, and suppose it to mean a cold place. In Bengal they call it often Jangal-teri and
ân the Cshétra-saniäsa, Jangalccihetra and Jar-chandi, all implying the woody country. In the Company's Registers, they are called the Junglemeháls or forest-cantons.

According to Major Dow history, when the emperor Frose III, in the year 1358, was returning from Bengoll, Ke passed through the Padmávatí Corest, which is' one of the old names of Patna, once the metropolis of that country. These forests abounded with elephants, and the emperor caught many. For a similar reason, the mountains and forests of Jhar-chand are called, in the Peutingerian tables, the Lymodus mountains, abounding with elephants, and placed there to the south of the Ganges. They really were in the country of Magadh or Magd, as generally pronounced, and which was also the name of Putna and of south Bahar. Much information concerning India, was derived from Arabian merchants and sailors, by whom the Greek and Roman fleets were chiefly manned. These to the names of countries prefixed the $A$ drabic article $A l$, as in $A l$-tibet, $A l$-sin, \&c.: thus they said Al-mogd for Magadh, Al-murica and Al-áryyaca, for Mura or Muricicá and Áryyácá, from which the Greek's made Limyrica and Lariaca. El-maied or Patna is placed, in the above tables, 250 Roman miles to the eastward of the confuence of the Jumná with the Ganges, and its name is written there Elymaide. These forests are called Ricrshaván or bear forests, and the inhabitants Bhalláta or Bhállat"ha, bear hunters or bear killers* "These are the Phyllitoo of Prolemy, and the Bulloits of Captain Robert Covert. There were also the Dryllo-phyllitee, pro-

[^57]bably from some place called Derowly: the Condali now the Gonds (as Bengala, from Banga) were part of the Phyllitco. This shews that these bear hunters were spread over a most extensive region.

As these extensive forests abound with snakes, the country is called in Sanscrit, Ahi-cslétra, or snake country, and Ahi-clhhatra, from the snakes spreading there, their umbrellas or hoods. In the spoken dialects, they say Aic-het and Aic-shet. The country and mountains of Aic-shet are well known all over the peninsula, according to Rr. F. Buchanan in his account of Mysore. Proleny gives to the mountains of south Bahar and in the western parts of Bengal, the name of Uxentus obviously from Aic-shet. In the southern parts, or in Burrá-nágpur, and adjacent countries, he calls them Adisal'hrus from Alhichhatra. The country about the Vindhyan hills, from Rajámehál to Chunár, is divided into Antara-girí, or within the hills, and Bahira-giri, or without the hills, and this last is applied to the country to the south of Patna along the Ganges.

Now let us pass to the rivers, and I shall describe first, those on the night of the Ganges, then the rivers on the left of it; and I shall conclude this section with an account of the Ganges itselfe This I believe is the best way, as it will obviate many repetitions.

The first river of note below Hurdwár, and on the right side of the Ganges, is the Calindí or Cáliná, for both are used indifferently by the natives, and which falls into the Ganges near Canoge. She is considered as the younger sister of the Yamuná: hence it is called the lesser Yamuná
or Cálindí. This account for Prolemy mistaking it for the elder or greater Yamuna, and making but one river of the two; Don Joan de Barros did the same, when he says that Canoge was at the confluence of the Jamuná with the Ganges.. Mr. D'Anvilele, better informed, removed the greater Jumná to its proper place; but carried along with it Canoge, which accordingly he placed near Allababad, at least in his first maps.

The royal road from the Indus to Palibothra crossed this river at a place called Cáliní-pacsha according to Megasthenes, and now probably. K'hoda-gunge ; Cáliní-pacshain Sanscrit signifies a place near the Cáliní.

The next is the blue :Yamuná or Cálindí, the daughter of the sun, the sister of the last Manu, and also of Yama or Samana, our Pluto or Sum-, manus. Her relationship with the lesser Cálindí or Cáliní is not noticed by the Pauránics, though otherwise well known. In the spoken dialects it is called Jamuná, Jumná, and Jubuná particularly in Bengal. It is called Diamuna by Ptolemy, Jomanes by Pliny', and Jobares by Arrian, probably for Jobanes or Jubuna. . It is called Cálindí because it has its source in the hilly country of Cálindá, called Culindá in the Geographical Commentaries, on the Mahá-bladrata. It is the Culindrine of Prolemy from Culindän, a derivative from Culíndá.

The confluence of the Gangía and Yamuná at Prayága is callea Triveńí by the Pauráarics; because three rivers are supposed to meet there; but the third is by no means obvious to the sight. It is the famous Sarasvati, which comes out of the hills to the west of the Yamunú, passes
close to Traneser, loses itself in the great sandy acsart, and re-appears at Prayág, humbly oozing from under one of the towers of the fort, as if asliamed of herself. Indeed she may blush at her own imprudence: "for she is the goddess of learning and knowledge, and was then coming down the country with a book in her hand; when she entered the sandy desart, and unexpectedly was assailed by numerous demons, with frightful countenances, making a dreadful noise. Ashamed of her own want of foresight she sank into the ground, and re-appeared at Prayága or Allahabad, for as justly observed, learning alone is insufficient.

These three rivers flow then together, as far as the southern Trivent in Bengal, forming the Triverí, or the three plaited locks: for their waters do not mix, but keep distinct all the way. The waters of the Yamuná are blue, those of the Sarasvati white, and the Ganges is of a muddy yellowish colour. These appearances are owing partly to the nature of the soil below, and above to the reflexion of light from the clouds.

The Themasá, or dark river, from its ${ }^{\text {theing }}$ skirted, at least formerly, with gioomy forests, is called Tonsa or Tonso in the spoken dialects, and by Ptolemy Touso or 'Tousoa.

It is not to be confounded with the Sona; for the Touso, according to him falls into the Ganges, above Cindia now Canti or Mirzapur. It is occasionally called Parrásáa, as in the Víynu and* Matsya-puránias; and
at its confluence with the Ganges, there is a very ancient place, and fort called to this day Parńasá.

The next river is the hateful Carmmanásá, so called, because, by the contact alone of its waters, we lose at once the fruit of all our good works. Its source is in that part of the Findhya hills called in the Purańas Vindhya-maulicá, which implies the heads, peaks or summits of the original mountains of Vindluya

This mountain presumed once to rear his head, above that of Himúlaya, and thus consigned it, and the intermediate country, to total darkness. One day Vindhya perceiving the sage Agastya his spiritual guide, prosel trated himself to the ground before him, as usual, when the sage as a punishment for his insolence, ordered him to remain in that posture. We had such mountaius formerly in the west, which kept the greatest part of Europe in constant darkness, and which must have met with a similar fate, though not recorded. All the ground he covers with kis huge frame is denominated Mauli, or the heads or peaks of Vindlhya, and is declared to be the original Vindhya, which gives its name to the whole range, from sea to sea, and is supposed to extend from the Sóna to the Tonsa. As the Carmmanásá comes from the country of Mauli, there is then a strong presumption, that it is the river Omalis of Megasthenes: thus the great river, which he calls Commenasis, is the Sarayí, and is so called, because it comes from the country of Comanh, or Almora. The river Cacuthis of the same author is the Puna-puná, and is so called because it flows through the country of wol. xiv.

Cécat́a. It is also called Magadhi by the Rawratiocs, for a similar reason. In this manner the Kamuná is also called Cálindé, because it comes from the hilly country of Cálinda, as I observed before.

The waters of the river Thaule were originally as pure, and beneficial to mankind, as those of any river in the country. However they were long after infected and spoiled, through a most strange, and unheard of circumstance, in consequence of which its present name was bestowed upon it.
i. Tri-śnnce was a famous, and powerful king, who lived at a very early period, and through religious austerities, and spells, presumed to ascend to heaven with his family. The gods enraged at his insolence, opposed him, and he remains suspended half way with his head downwards. From his mouth issues a bloody saliva, of a most baneful nature. It falls on Vindhyl, and gives to these mountains a reddish hue: hence they are called Rohita or Lohita, the red and bloody hills in the vicinity of Rotas. It is unnecessary to remark, that this infectious saliva, mixing with the waters of the river Mauli, would naturally infect, and render them most inimical to religious purposes. This legend is well known; but the best account I ever saw, is in the Mahé-Rámayana, in a dialogue between Agastya, and Hanumán. The next is the son $\sigma^{\prime}$ or red river: in the Ruránas it is constantly called Sona, and I believe never otherwise. In the Amara cosa, and other tracts, I am told it is called Hivañya-báhu implying the golden arm, or branch of a river, or the golden catal or channel. These expressions imply an arm or branch of the Sond, which really forms two branches, before it falls into the Ganges. The easternmost, through
the accumulation of sand, is now nearly filled up, and probably will soon disappear.

The epithet of grolden, does by no means imply that gold was found in its sands. It was so called probably, on account of the influx of gold, and wealth, arising from the extensive trade carried on through it; for it was certainly a place of shelter for all the large trading boats, during the stormy weather, and the rainy season.

In the extracts from Megasthenes by Puint and Arrian, the Sonus and Erannoboas appear, either as two distinct rivers, or as two arms of the same river. Be this as it may, Arrian says, that the Erannoboas was the third river in India, which is not true. But I suppose, that Megasthenes meant only the Gangeticl provinces: for he says that the Ganges was the first and largest: he mentions next the Commenasis or Sarayu, from the country of Commanth, as a very large river, the third large river is then the Erannoboas or river Sona.

Prolemy finding himself peculiarly embarrassed with regard to this river, and the metropolis of India situated on its banks, thought proper to suppress it entirely. Others have done the same, under similar distressful circumstances. It is however well known to this day, under the denomination of Hirańya-bálhá, even to every school boy, in the Gángetick provinces, and in them there is no other river of that name.

Mue origin of the Sona, and of the Narmadá is thus described by IT. Tieffenthatler, on the authority of an English officer, who surveyed
it about the year 17\%1*" according to an English Engineer, who went ${ }^{66}$ from Allahabad to the source of the Narmadá, there are three rivers, ${ }^{6}$ which have their origin from a pool eight yards long and six broad, and "s surrounded by a border of brick. This pool is in the middle of the ${ }^{66}$ village of Amarcan'taca. Above it is a rising ground about fifty yards ${ }^{66}$ high, on which Bráhmens have built houses. The Narmadá flows ${ }^{6}$ from the said pool, a mile and half towards the east, then falls with " violence down a declivity of about twenty-six yards, and then runs with ${ }^{6}$ velocity towards a village called Capildara and from this place through " an extensive forest, and then turning towards the west, it goes to "Garamandel and thence into the sea. In coming out of the above pool " it is one yard broad."
" The Sone makes its first appearance, about half a mile from the pool, ss and then runs through a very narrow bed, down a declivity of about " twenty-five yards. Five miles thence, it is lost in the sands; then collect${ }^{66}$ ing itself again into one body, it becomes a considerable stream, and ${ }^{16}$ goes to Rhotas. "The Jukala (Johila) is first seen about three miles from "s the pool, and is but an insignificant stream."

Tieffenthaser has omitted the name of the offcer, but it was Wile mam Bruce, a Major in the Company's service, and mentioned by Majos Rennel. $\dagger$

[^58]The next river is the Puna-puná, which signifies again and again, in a mystical sense; for it removes sins again and again. It is a most holy stream, and is called also Magadhi, because it flows through the country of Magadha or Cícatáa. Hence this river might be called also Cícaít, and it is the Cacuthis of Megasthenes. Then comes the Phulgu, the Fulgo of the maps. Ithought formerly, that it was the anonymous river of Ptoleny, which he derives from the mountainous regions of Uxentos, in Hindí, Aicshet, from the Sanscrit Ahicshétra. Our author has pretly well pointed out its confluence with the Ganges near Mudgir, where it receives another river from the south, called the Kewle in the maps, and which is really the anonymous stream of that author, as it appears from several towns on its banks : but Prolemy has lengthened its course beyond measure; as I shall show hereafter.

Let us now proceed to the Sulacshini, or Chandravati, according to the Cshétra-samása. It is now called the river Chandan, because it flows through the Van or groves of Chandra, in the spoken dialects Chandwan, or Chandan. In the maps it is called Gogá, which should be written Caucá, because according to the above tract, it falls into the Ganges, at a place called Cucu, and in a derivative form Caucavá, Caucwé́, or Ccuecá. It flows a little to the eastward of Bhagalpur: but the place, originally so called, has been long ago swallowed up by the Ganges, along with the town of Bali-gram. In the Jina-vilás, it is called Arańya-bútú, or the torrent from the wilderness, being really nothing more.

The other rivers, as far as Tamlook, are from the Cshétra-sanása. The Rádá now the Bainsh, falls into the Ganges near Jungypar. I believe it should be written Rád $h a$, because it fows through the country of that name. The Dwáracá is next: then, the Mayuracshí or with the eyes of a Alayara, or peacock; this is the river More. To the N. E. of Jemmyacandi are the following small rivers, the Gocarní, and beyond this the Cheta, and the Grivamoticá, in the spoken dialects Gármorá. Their path towards the Ganges, is winding and intricate.

The nextriver is the Bacréswari, which comes from the hot wells of Bacréswara-matúnéva, or with the crooked Inga. Thesc hot wells are of course a most famous and holy place of worship. It falls into the Ganges above Catuá, and it is called in the maps Bábáa.

The Aj; or resplendent river is the next: its name at full length is Ajávatí or Ajainatí, full of resplendence. The Ajmati, as it is pronounced, is the Amystis of Megasthenes, instead of Asmytis. It fell into the Ganges, according to Arrian, near a town called Catadupa, the present, and real name of which is Cata-lwipa; but it is more generally called Catwá. The A关 is called also Ajayí, Ajayi and Ajasá, in the Galava-Tantra. As Ajaya may be supposed to signify invincible, it is declared, that whatever man bathes in its waters, thereby becomes unconquerable. The next river is the Dímodard, one of the sacted names of Vishnu, and according to the Cshétra-samása, it is the Vedasmriti, or Vedavati of the Putunas. Another name for it is Dévanad, especially in the upper parts of its course. In the spoken dialects it is called Damodá or Damodí. It is
Geographi of India.
the Andomutis of Arman, who says that it comes, as well as the Cacuithis, now the I Ina-puna, from the country of the Mandiadini, in Sanscrit Manda-bhágya or Manda-dhanya.

The Dáriceswarí, or Dáriceé $̂$, is called Dwáraceś in the GálacuTantra. It is the Dalkisor of the maps, near Rishenpur. It is so called from Dáriceśwara-maládéva.

Then comes the Sitéatí, Śailavatí; or Śailamatí called simply Sailaya by the natives, and Selai in the maps. It is the subject of several pretty legends, and a damsel born on its banks, and called also Śallamatí from that circumstance, makes a most conspicuous figure in the Vithutcaithá. It is the Solomatis of Megasthenes.

The next river is the Cansávait, called Cansaya by the natives, and Cassai in the maps. The three last rivers joining together form the Muapa-Náráyańa, or with the countenance of him, whose abode is in the waters, and who is Visinu.

Thes comes the Swaría-réc'há, or Miran'ya-réc'há, that is to say the golden streak. It is called also in the Purańas, in the list of rivers, Suctimath, flowing from the Rücsha, or bear mountains. Its name signifies abounding with shells, in Sanscrit Sucti, Sanc'lia, or Cambu.

[^59]Fron Cambu, or Cambuja, in a derivative form, comes the Cambuson mouth of Polemy and which, he thought, as well as many others till lately, communicated with the Ganges, or even was a branch of it.

Trie Suvarńa-réc'há, it is true, does not fall into the Ganges any more than the four rivers, which I am going to mention; but they are so situated, that it is necessary to give some account of them, for the better understanding of this Geographical Essay. Of these four rivers the first is the Sońa, which flows by Balasore, and is not noticed, as far as I know, in the Purááas.

The next is the Vaitarant, which runs by Yajaipur, the Jaugepoor of the maps. In the upper part of its course, it is called Cocila, and in the spoken dialects Coil.

There are two rivers of that name, the greater and the lesser; this last is I believe the Salondy of the maps. The greater Vaitarani is generally called Chiltrotpalá in the Puránas. The third is the Brâmańt, called Sanc'há in the upper part of its course. This and the Vaitaraní come from the district of Chutcu-Nagpur.

The fourth river is the Mahanada or Mahennadí, that is to say the great river. It is mentioned in the lists of rivers in the Pu'an'as, but otherwise it is seldom noticed. It passes by Cataca.

Pronemy considers the Cocila and Bráhanáá xivers as one, which he calls Adamas, or diamond river, and to the Makimadi he gives the name of

Dosaron. He is however mistäken: the Mahánadi is the diamond river, and his Dosaron consists of the united streams of the Brálmanit, and the Cocilá and is so called, because, they come from the Dasárańya also Dasárría, or the ten forest-cantons. He might indeed have been led into this mistake very easily, for the Bráhmaní and Cocilá come from a diamond country in Chuta-Nagpur, and in Major Rennell's general map of India, these diamond mines towards the source of these two rivers are mentioned, and seem to extend over a large tract of ground.

Before we pass over to the other side of the Ganges, let us consider the rivers which fall into the Yamuná. The first river is the Goghas, to be pronounced Goghus, which passes close to Amara, or Amere near Jaypur. It comes from the east, and is first noticed at a place called Ichrowle, as it passes to the north of it, at some distance. It winds then towards the S. W. and goes towards Amere and Jaypur, thence close to Bagroo, when it turns to the south and soon after to the S. E. The village of Ichrowle, being near the Goghus, is also called Goghus after it, or Cookus, as it is written in Arrowsmiru's map: but it is considered by that famous greographer, as a different place from Ichrowle. This river is called Damiadee, by some of our writers of the seventeenth century, and is supposed by them to come from the mountainous district of Hindoon, and then to flow close to that city towards the west, and to fall into the Indus at Bácár, according to Captain R. Covert, who was there I believe in the year 1609 or 1610. ryis is by no means a new idea, for this is the river without a name mentioned by Prolemy, who places, near its source, a lown called Gagasmira, in which the names of the Goghas, and of the town of Amere are suffirol. xiv.
ciently obvious. Some respectable travellers, who have occasionally visited that country are of the same opinion, being deceived by seeing that river flowing towards the west a considerable way.

The town of Hindoon still exists, and the inhabitants of the adjacent country who were formerly great robbers, trusting to their fastnesses, among the hills, are still so, whenever they can plunder with safety. It is, most erroneuusly called Hindour, in Arrowsmith's map, and I am sorry to observe, that otherwise admirable work disfigured kyy bad orthography, the result of too much hurry, and carelessness, and the errors are equally gross and numerous, and sometimes truly ludicrous. As to the; Damiadee, * this appellation is now absolutely unknown. The first notice I had of the Goghas was from a native, surveyor; whom I sent to survey. the Panjáb, and who accidentally passed through Jaypur, but remained there several days.

The Damiadee was first noticed by the Sansons in France; but was omitted since by every geographer, I believe, such as the Sieur Robert, the famous D'Anville, $\AA$ © ; but it was revived by Major Rennell, under. the name of Dummody. I think its real name was Dhúmyát $\hat{\text { of }}$, from a thin mist like smoke, arising from its bed. Several rivers in India are so named: thus the Hivanya-báhá, or eastern branch of the Śsóa, is called Cujouaí, or Czihiq from Cúha a mist hovering occasionally over its bed. As this branch of the Soría has disappeared or nearly so, this fog is no longer to be

[^60]seen. I think, this has been also the fate of the Dhímyatit which is now absorbed by the sands. This Dhúmyátí, seen at Baccar by Capt. Covert, did not come from Hendown, but from some place in the desert, still unknown, but I suspect that it is the river, without name, placed, in Arrowsmirn's map, to the E. N. E. of Jaysulmere. It passes near a village called Lauty or Látyanh, which village is said to be twenty Cos to the east of Jaysulinere, by the late Major D. Falvey, who travelled twice that way, in the years 1787 and 1780: according to him there is no river, nor branch of the Indus between Jaysulmere, and Baccar. He was a well informed man, who understood the country languages, and in his route he always took particular notice of the rivers which he crossed. The Damiadee is now called by the natives, Lohree or Rohree, from a town of that name, near its confluence with the Indus. I am assured, that, during the rains, the backwater from the Indus, runs up the dry bed of a river, for a space of three days. This dry bed is supposed, to have been formerly the bed of a river, formed by the united streams of the rivers Caggar, and Chitangh from the plains of Curu-cshetra, but this I think highly improbable.

The next is the Charmmanwati, or abounding with hides. It is often mentioned in the Puránas, and is called also Charmmabala, and sivanuda, in the spoken dialects Chambal and Seonad. It is sometimes represented as reddened with the bloody hides put to steep in its water.*

[^61]The hides, under the name of Chembelis, were formerly an article of trade.* 'The country about its source is called Charmma-dwipa, which is certainly between waters or rivers, which abound in that country. There is a town called Sibnagara, or more generally Seonah, the town of Siva, after whom this river is denominated.

The Siprá, Siprá, Cshiprá, called also the Avantí river, falls into the Chambal.

The Sindhu or Sind, is occasionally mentioned in the Puraías, as well as the little river Párá, commonly called Párvatí, which, after winding to the north of Narwar, falls into the Sindhe near Vijayagar. It is famous for its noisy falls, and romantic scenes on its banks, and the numerous flocks of cranes and wild geese to be seen there, particularly at Buraichá west of Narwár. The next is the little river Paujá, which falls into the Yamuna, and is called in the spoken dialects Parja, and in the maps Pohaj.

The Vetravati, oi abounding with withies, is a most sacred river. Wetra or Betra is a withy, and so is Vithr in the old Saxon. In the spoken dialects and in Euglish, the letter $R$ is omitted; in Hindi they say Beit and in Eanglish With or withy. In the spokon dialects, it is called Betwá and Betwántí.

Tere river Dussam, which falls into the Tetravati is probably the Dośarnáa of the Pauránics.

[^62]The next river is that, which we call the Cane: but its true name is Ceyán, and the author, of the Cshétra-samása, says, that it is the Criyá, or Criyána of the Purárías, and called Ceyan in the spoken dialects. Another name for it is Crı̌shna-gangá, which, according to the Varáhaw puránía flows by Cálanjara.

Let us now pass to the rivers to the north of the Ganges, or on the left of it. The first is the Sarávatí, or full of reeds: another name of the same import is Bárá-gangá, this is used by natives: in the Máhá-blárata, it is called $S u$-Vámáa, or most beautiful: its present name, and of the same import is Rama-gangá, or Ramya-gangá. In the Saravan, or Saraban, that is to say the thickets of reeds on its banks, Cárticéva was born. This name is sometimes applied to the river itself, though improperly, and from Śaraban, Ptolemy made Śarabon and Śarabos. It is called Suo shomá, in the Bhágavat, or the most beautiful. It may be also translated the beautiful Shomá or Somáo

In the Amara-cośa, and commentary, it is called Sausamí in a derivative form from Su-samí. It is declared there to be in the famous and extensive country of Usinara. The reason for its being introduced into that work is, " because, there is in it a city called Cant"ha, and Sau-samí"cant"ka. This word is of the neuter gender, provided the compound " term be the name of a town in Uśnara, else it is feminine. Example; " Sau-samí-cant'ha, and Dacshinía-cant'há names, of towns; the first in " Usínara, the other out of that country.* These two towns still exist:

[^63]the first, in the late sutrveys made by order of Govemment, is placed on the westem bank of the Rama-gangá, in $29^{\circ} 7^{\circ \prime}$ of latitude: the other or south Cant'ha is in the district of Budayoon; and is the head place of the Purgunah of Kant according to the Ayin Acberi.* There is little doubt, but that the Somá or Samé is the Isamus of Stráeo, the boundary of Menander's kingdom. $\dagger$

The beautiful Jámá was mentioned by Megasthenes, as a river falling into the Geanges, according to Piny. This river consists of two branches, the western is called Gángán, according to the late surveys made by order of Government; the eastern branch is the Ram-gangá, and they unite about twenty miles to the south of Rampoor. On the banks of the former lived the Gangani of Prolemy called Tangani in some copies.

The next river is the Gaurá, Gaurí or Gaurani. There are many rivers so called, but it is doubtful, whether this was meant by the Pauránics. The inhabitants of the country call it so, this is sufficient authority, and it is probably the Agoranis of Megasthenes.

The Gomati; or $W$ ásishtí river, is called in the spoken dialects Gumti. About fifty miles above Lacknow, it divides into two branches, which unite again below Jounpoor. The eastern branch retains the name of Gumti; the western branch is called Sambu and Siucti, and in the spoken dialects

[^64]Sye, because it abounds with small shells. This is really the case, as I have repeateuly observed, whilst surveying, or travelling along its banks. They are all fossile, small and imbedded in its banks, and appear here and there, when laid bare by the encroachments of the river. . They consist chiefly, of small cockles and periwinkles. Many of then look fresh, the rest are more or less decayed, and they are all empty. I know several other rivers so called, and for the same reason. In the spoken dialects, their name is pronounced Sye as here, Soy and Sui, at other places, from the Sanscrit Sucti. This river is not mentioned in any Sanscrit book, that I ever saw, but I take it to be the Sambus of Megastienes.)

## .bent

The next river is the Sarayu, called also Devicí, and Gharghara; in the spoken dialects Sarju, Devá, Dehá and Ghághrá。 Theß Raûúanics consider these three denominations, as belonging to the ${ }_{i}$ saine river. The natives here are of a different opinion; they say that Dewa and Ghághrá are the names of the main stream, and the Sarju a different river as represented in Major Rennell's maps. The Sarje comes from the mountains to the eastward of the Dewá, passes by Baraich, and joins the Dewá above Ayodhyá or Oude, and then separating from it, below that town, it crosses over to the other side, that is to say to the westward of it, and falls into the Ganges, at Bhrigguráśrama, in the spoken dialects Bágrásan. In the Cshétra-samása it is declared, that the Gharghara is the true and real Sarayu, and that it is called Mahá-sarayz or great Sarayu, and the other is the little Sarayu. According to the above Geographical Treatise, the Sarayu is also called Prema-báhiní, or the friendly stream. Towards the west it sends a branch called in the

Puránas, Tamasí, and in the spoken dialects, and in the maps Tonsa: it is a most holy stream, and joins the lesser Sarayu in the lower parts of its course.

It is omitted by Prozemy, but it is the large river called by Megasthenes, Commenases, or the Comaunish river, because it comes from the country of Comiaunh, called also Almorah. It is called Ocdanes by Artemidorús, as cited by Strabo, because it flows by the town, and through the country of Oude, called Oëta by the poet. Nonnus.

The Gharghara is called Gorgoris by the Anonymous of Ravenna: for thus I read, instead of Torgoris, as the original documents were in the Greek: language, in which there is very little difference between the letters Tsand Grreek 「. The Ráváa or noisy river, is mentioned in the lists of countries in the Puránas, otlierwise it is but little known. In a derivative form, ít becomes Rávatê, and in the spoken dialects Rábst and Ráptí.

The Gand'ací or Gandacávatí, is called Gandac in the spoken dialects, and it is the Condochates of Megasthenes. This river is left out by Prolemy; but it is obvious, at least to me, that he had documents about it and the Sarayu, which, either he did not well understand, or were very defective. All rivers to the north of the Ganges flow in general towards the south, declining more or less toward the east. Here Prolemy has a river, which, according to him, flows directly towards the south-west, and he has very properly bestowed no name upon it. What is remarkable is that the source of this imaginary river is really that of the Gandaci, and is confluence with the Ganges is that of the Dewá. On
itts banks Wres lias a town called Cassida, the Sanscrit name of which is Cushaidua or Cusadyb, the sane with Oude; and, as it were to complete the sum of blunders, he has plàced Canogza or Canoge on its' banks. Accordingito Peomeny, the sounce of this river is in the northern hills, at: a place, which che calls Sélámpurge (as it is wriften and accentuated in. the Greek original); at the foot of nount Bepyrithes, so called from numerous passes throught and calledto this day Brimpheri, synonymous; with Bhay-plueni or the tremendow passes as we have seen before. Selampoor, ismeally a Sanscrit name of a place, Śailapura, or Sailampur, for both are granmalical, and are synonymous with Sailagrám, and the abvious meaning, and we may say the only one of both, is the tawn of Saila whiè signifies à rocky hill

- Evmúsiasts, have endeavoured to frame etymologies suitable to the rank, and dignity of this stone, which is a deity, and is god in its own right, for it iss. Vismut but they are rejected by seber and dispassionate Pandits, as too far fetched, and sometimes ridiculous. The name of this stone is written Śáagrám, Śailagrám, Śaila-chacra, and GandacíŠilú. Regple, who go in search of the Śalagrâm, travel as far as a place called Tháccá-cote, at the entrauce nearly of showy mountains. To the south of it is a village, where they stop, and procure provisions. This village was probably called Śailapur or Śailagrám, from=îts situation near a Śaila or rocky hill, and from it this famous stone was denominated Saitagrám, as well as the river. Thúccá is mentioned in Arrowsmuraz's map.

The origin of this rocky hill is connected with a most strange legend, which I shall give in the abstract. $Y_{\text {Ishnu }}$ unwilling to subject himself to the dreaded power, and influence, of the ruler of the planet Saturn and having no time to lose, was obliged to have recourse to his 'Máyá, or illusive powers, which are very great, and he suddenly became a rocky mountain. This is called Saila-máyá, of a rocky mountain the illusive form: but Saturn soon found him out, andin the shape of a worm, forced himself through, gnawing every part of this illusive body. For one year of Saturn was Vishnu thus tormented, and through pain and vexation, he sweated most profusely, as may be supposed, particularly about the temples, from which issued two copious streams the Cržshna or black, and the Swétu-Gandaczior white Gandací; the one to the east, and the other to the west. After one revoIntion of Saturn, 'Vishnu, resumed his nwn shape, and ordered this'stone to be worshipped, which of course derives its divine right from itself; without any previous consecration, as usual in all countries in which images are worshipped.

There are four stones, which are styled Śaila-máyá and are accordingly worshipped, whenever they are found. The first, is the Śaila, or stone just mentioned; the second, which is found abundantly in the river Soria, is a figured stone, of a reddish colour, with a supposed figure of Ganésí, in the shape of an elephant, and commonly called Gańéśa-cáa-pát'har: the third, is found in the Narmmade; and the fourth; is a single stone or rock, which is the Sailamáyá, of the third part of the bow of ParaśuRáma, after it had been broken by Ráma-chandra. It is still to be seen,
about seven Cos to the N. E. of Janaca-pura in Taira-bhucta, at a place called Dhanucágrama, or the village of the bow, occasionally called Saila-máyá-pur, or gráma, according to the Blúvana-cośa.

The river Gandacá is so called because it proceeds from a mountain of that name. The people of Naypála call it Cund aci, because it proceeds from the Cund'a-sthala or the two cavities, or depressions of the temples of Visunu, in the shape of a mountain, as I observed before.

Ir is also called Sala-grama, because of the stone of that name found in its bed. Another name for it is Náráyañi, because Vishnu or Náráyańa abides in its waters, in the shape of the above stone.

There is a place, near Janaca-pura, which as I observed before, is called Śaila-máyá-pura or Saila-máyá-gráma, and which becomes Śailu pura, or Saila-gráma, in the spoken dialects.*.

Some believe the Saila-grám to be the eagle stone: if so it is not a new idea; for Matthiolus, who lived I believe towards the latter end of the fifteenth century, says, that eagles do keep most carefully such a stone by them, and that, for this purpose, they travel to India in order to procure it. For without it the eggs in their nests would infallibly rot and be spoiled.

[^65]The next river is the Bágmatí or Bángmatí, that is to say full of noises and sounds. According to the Himavat-chanda, a section of the Scã̃dapurána, it comes from two springs in the skits of the peak of sitio. The eastern spring is the Bágmati, and the western is called after Harinesjuara or Harińésa, or the lord in the shape of an antelope. We read in the above section, that Siva once thought proper to withdrav from the busy scenes of the woild, and to live incogito in the shape of an ugly and deformed male antelope that he might not be recognised by his wife, and by the gods, who, he knew would immediately go in search of Giin, as he was one of the three grand agents of the world. He was not mistaken; for 10,000 years of the gods, they searched for him all over the world, but in vain. His lubricity at last led to the discovery; for some of the gods took particular notice of the behaviour of an ugly male antelope, and they wisely concluded, that it was SivA himself in that shape. Since that time Siva is worshipped along the banks of the Bagmatt, under the title of Harińeswara, or Harineśa. The peak we mentioned before, is called to this day, according to Colonel Kinkpatrick, Sheopoory, the place or abode of Sive or Seo. The pool, where he äd his female friends used \$o allay their thirst, is called in the above Purana, Mrigas ringodaca, or Harinastringolaca, or the water of the peak of the antelope, meaning Sive in that shape. The western branch again flows into the Bugmatí; and I believe, that it once communicated its name Harineśi to that river; and similar instances occur occasionally in India Hence I suppose that it is the Erineses of Megastuenes, who besides says, that it ran into the Ganges, through the country of the Matho. This country is that of Tirluut, called also in Sanscrit Maitha, and Maithila from a Rájá, whose-
father was called Mrr'нí, and from him the son was called, in a derivative form, Matthá and Matrehlá

The next river is the Camalá, which retains its ancient name. The town of Dwára-bhangá, was originally on its banks, according to the Bhávanacośa. It was formerly a very extensive town with a fort built at a very early period. What was its original name is unknown: for Dwára-bhang'á, signifies that the gate, either of the fort, or of the palace of the Raja, had been destroyed, probably by a sudden overflowing of the river Camaláa. It was repeatedly destroyed, during the wars of the natives with the Muselmans. It is now a small town, and the palace of the Rajás is no longer on the banks of the Camalá, but on the Bacayá, called in the maps Buckiah, a little to the westward of the old site of the town: - It appears to me, that the river Camalá, was from the town being on its banks called the Dwára-bhangáa river, and synonymous with Diwára-báhá. It is then the river Tiberobous and Taberuncus for Thabero-bancus, mentioned in an account of the Bralwens by a certain Palladius, who wrote in the latter end of the fourth century. The name of this town is written Dwára-bhanjí and Dwárabhangá, and also Dara-bhangá, and it is the Durbungah of the maps, and they all signify that the gate or door, had been broken down or camried away. In scripture likewise the gate of a town or of a palace was no insignificant building: there, were held public meetings, and it was also a court of justice. On the banks of the Camalí was the native country of Calanus; for it is obvious from the above account, that with regard to persons travelling from the west, this river was to the eastward of the Ganges. It appears also that the country on its banks vol. xiv. 50
was chiefly inhabited by Brahmens, or at least, that they were in great numbers there; and this is very true of Tirhut. On the Divya-riadi or divine river, but more generally called the little Gandací is Púshá-grám, or the town of the sun in his character of the nourisher. It is called also Púshá-ghát̄́; and the founder was a worshipper of the sun. The inhabitants are Bhúmiháras or husbandmen, and are very fond of horses. On the seventlı of the month of Agrahayana, they worship their horses. This place was, it appears, famous at an early period for the breeding of horses, and there is now one of the Company's studs: the place is generally called Poossáh. To the S. W. of it is the river Núná, which, having incurred the sun's displeasure, was cursed by him, and its waters became poisonous.

The Causici comes next and is a large and famous river commonly called Cuśáa and Cuśi. It is formed by the junction of seven large streams, between the two first ranges. They are all called Cusí, with an epithet peculiar to every one of them. The main branch is said to come from the hermitage of the sage Cauśica or Viśwámitra, which place with a village in its vicinity is called Cuśagráma, or Cus'agánh, and this river Cuśa or Cauśa is the Cosoagus or Cosoagon, in the objective case, mentioned by Megasthenes.

Tue next is the Ráhudả, called also Mahodá in the Matsya-purána. In the list of rivers in the Mihá-Bhárata, we read Báhudá Mahá-nadí. These denominations imply, many waters, great waters, or the great river.

In the Tricand ${ }^{\prime} a-\cos ^{\prime} a$ it is said to be called also Śsaita-Válini, or the white river. Its present name is Dhabala or Dhabali, which is also a

Sanscrit denomination of the same import. Another name for it is Arjune, synonymous with Dhabalu. It consists of two branches, the greater, and the lesser. The greater is simply called the Mahá-nada, and the lesser the Dhabali river. This, I suppose, to be the Sito-catis of Megasthenes, from the Sanscrit Sita-cantí, to be pronounced Sito-cantí or nearly so, and which signifies the river with a white resplendence, or shining white. This river, and its western branch, are mentioned in the Cshétra-samása, where the author describing the country of Ásáma, and Cáma-rúpa, proceeds westward. as far as the Tîstá, and says, that the next river is the Sita-prabhá, brought from Himálaya by Sahá-deva, and the next is the Sitá brought from the hills by Brahmá. Sita-prabhá signifies shining white, and is the same with Sita-cantí, or Mahá-nadí. The Sita or white river, is obviously the Dhabale.' This last was probably the original name, as it is still current among the natives.

Ptolemy mentions this river, but without any name; otherwise its course is tolerably well delineated. He makes it fall into the western branch of the Ganges, because he was unacquainted with the eastern one, or the Padmá. He places its confluence between Tondota, and Celydna. Tondota is from the Sanscrit Tand 'a-hatt, or market place of Tand'á, which still exists. Celydna is from Ciritná or Cilitná-devi, worshipped at Cirit-cona, near Moorshedabad.*.

Through an obvious mistake in the longitude of the confluence, he makes it protrude a great way to the westward of the two last places.

[^66]"The next river is the Icsliumati so called, because the adjacent country abounds with Icshu or sugar-cane. It is also called in the Puranas篗ritityá, because it divides into three branches or streams, in Sanscrit TTri-srota, as it is repeatedly called in the Cshétra-samása. In the spoken dialects the letter $\mathbb{R}$ is invariably left out, in the two words, which form this compound. We must say of course Tlisota, from which comes Tistâ iss present name.

The first or western branch is called Purúna-bahả, or the old stream; and in the naps Purnábahá. The middle branch is named Atreyi, in the maps Atré: the third or easternmost, is still called the Tistá. It springs from the main body, a little above Sahib-ginge, passes to the north of Rungapoor, and falls into the Bramma-putra,

Prolemy has noticed this river, and, with a considerable degree of accuracy, he has delineated the relative situation of what he supposed to be its source, with regard to that of the Mahá-nadí, as may be seen by comparing it with that part of Major Rennell's atlas, in which these two rivers are represented, as coming out of the hills, with a ridge between them, as in Prolemy's map.

Our author has left out the first and second branches, and has carried the whole body of the river at once, through the third branch into the Brahna-putra, which he calls Daonas, and this name he has also bestove ed on the Tista:

Tun Icshamate is the Oxymais of Mearmenes, fer thige whould read instead of Oxymacis; the same substitubur of Tor Thaving taken place, that wes noticed in a former instance. "It is anso the 其ppobarus of Cresins, who says, that it is a river in India about tivo frilongs broad, and that its name in Hindi, signifies, producing every thing that is good, and, that during thiriy days, it produces amber. A few lines after he says, that this amber proceeds from trees called Sipachora. This word is variously written in different MSS. Some read Sipachora, and Pifvyhas Aphytacora* which, says he, signifies great sweetress, or very sweet. This last is the true reading, for it is obviously derived from the Sanscrit Mishtíacara to be pronounced in the spoken dialects Mit́ácora, and which signifies very sweet; from Mishta sweet, and Acara, which implies excellence, excellently sweet. This amber is the common sugar, of a light amber colour, transparent, and in crystals before it is throughly refined.

The river IIyparchos, called Hypobares by Punv, ferens oimnia bona, producing every thing that is good, is from the Sanscrit Sarva-vara, every thing good, to be pronounced Sabobara, for they say Sab or Sub for Sarva, all. There is a small river of that name mentioned in the Scandapuráña, $\uparrow$ which falls into the Bágmatí. It is called Sarvaricá from Sarva-varia, and in a derivative form Sarvaricá or Sarbarica, producing every thing that is good. Hypobarus and Hyparchos, are obviously

[^67]VOT. XIV.
comptions from Subbara and Subbárica, for the leiter 11 is often substituked to the letter $S$; thus in Sanscrit we have Septa seven, Septem in Hatio, Hepta in Greek and Heft in Persianorm Another name for this river, is Guda, because the country on its banks, produces abundantly Guda or raw sugar.

Caratoy: a sacred stream in the north of Bengal. At the wedding of Siva and Párvatí, the water, which was poured upon their hands, fell to the ground, and became a river called Cara-toyá from Cara the hand, and Toya water. It is the Curraityá of the maps.

LeT us now pass to the Brahma-putra or Brahmá-tanaya, that is to say the son of Brahma', or rather his efflux. 'The account of this river, and of its warious names is somewhat intricate, but above all its strange origin, which cannot well be passed unnoticed. It is to be found in several Purááas, but the Cálica is the most explicit on the subject; and I shall give it here in the abstract.

Brahmá, in the course of his travels, riding upon a goose, passed by the hermitage of the sage Santanu, who was gone into the adjacent groves, and his wife, the beautiful and virtuous, Amoghá was alone. Struck with her beauty; he made proposals, which were rejected with indignation, and Amoghá threatened to curse him.

Brahmá, who was disguised like a holy mendicant, began to tremble, and went away: however before he turned round, his effux fell to the
ground, at the door of the hermitage. The efflux is described, as Maiaca like gold, Carob-rataca, radiant and shining like gold, which is the colour of Bramiá; it is always in motion like quicksilver. On Santanu's return Amoghá did not fail to acquaint him with Brahmás behaviour: he gave due praise to her virtue, and resolution; but observed, at the same time, that with regard to a person of such a high rank as Brahmá, who is the frist of beings in the world, she might have complied with his wishes, without any impropriety. This is no new idea; however Amoghá reprobated this doctrine with indignation. I shall pass over, how this efflux was conveyed into her womb, by her husband. The Nile was also the efflux of Osinis, and probably the legend about it was equally obscene and filthy. In due time she was delivered of a fine boy, amidst a vast quantity of water, and who was really the son of Brahmá, and exactly like him. Then Santanu made a Cund'á or hole like a cup, and put the child and waters into it. The waters soon worked their way below, to the depth of five Yojans or forty miles nearly, and as far as Pátál, or the infernal regions. TThis Cund'a or small circular pond or lake, is called Brahmácund'a, and the river issuing from it, Brahmá-putra, the son of Brahmá。 The water in it is in a constant motion, always violently agitated, as may be supposed; and wonders are related of this place.

From this pool issues a stream, which forces its way, through the famous chasm, and pass of Prabhu-cut ${ }^{\text {harara }}$, and rushes through the valley of Asáma. It receives from the north the Lohitá, which flows through the country of Tribet, then through Asáma and Bengal.

Tris pool is occasionally mentioned in the Puriánas, and always placed at the extremities of the east, near the Ulaya, or mountains of the rising sun.

In the Ambicác-chand'a it is said, that the sun performs there his ablutions, before he appears above the horizon. It is called Sádya-lirada, or the deep pool where the sun gets rid of his weariness, Sád or Sádi, after his fatiguing task. For this reason the Brahmá-putra, which comes out of this pool, is called Gabhusti, or the river of the sun.

In the Cshétra-samása, it is said, that this pass is sixteen Yojans, or sixtyfour Cos to the eastward of Godagram, or Gorgính: and the natives of Aśáma, with several pilgrims, whom I have consulted, reckon the distance to be about seventy Cos; the difference in the present case is trifling, and the whole distance may be about 125 British miles.

Frou the above pass to the Cund $\alpha$, the journey is always performed in eight days, because traveliers must keep together, on account of the inhabitants, who are savages, great thieves, and very cruel. There are fixed and regular stages, with several huts of the natives. The kings of Asama are sometimes obliged to chastise them; but in general they contrive to secure the friendship, and protection of their chicfs, by trifling presents. The country is covered, with extensive forests, with a few spots cleared up, with very little industry and skill. Tygers are very numerous, and very bold.

The stages are very long, and every days march is reckoned between nine and ten Cos, and as there is, I believe, a resting day, the whole distance may amount to about sixty-five Cos or 120 British miles.

There are in Ásáma two rivers called Lohitá, and both are mentioned in the Matsya-purána, in the list of rivers; the Chacra-Lohitá or greater Lohitá, and the Cshudrct-Lohitá, or the lesser one. This last falls into the Brahmá-putra near Yogi-gopá, and is noticed in the Bengal Atlas. The original name of the greater Lohitá is Samá or Sam, and this is conformable to a passage in the Varáha-mihira-sanhita. There is a long list of countries, and among those situated in thie eastemmost parts of India, there is a Samí-iat́a, or country situated on the banks of the river Samá. This country of Sam is probably the country of Sym of Hartho the Armenian, - and it is part of Tibet, called Tsan by the Chinese.

The Samé was afterward called the red river, from the following circumstance. The famous Rama, with the title of Parasu or Parsu, having been ordered by his father to cut off his own mother's head, through fear of the patemal curse was obliged to obey. With his bloody Paraśz or Parsu, or cimetar in one hand, and the bleeding head of his mother in the other, he appeared before his father, who was surrounded by holy men, who were petrified with horror at this abominable sight. He then went to the Brahmá-cuńd'a to be expiated; his cimetar sticking fast to his hand all the way; he then washed it in the waters of the Samá, which became red and bloody, or Lohitá. The cimetar then fell to the ground, and with it he cleft the adjacent mountains, and opened a passage for himself vol. XIV. $5 \Omega$
to the Cund'a, and also for the waters of the Brakmactpuira; he then flung the fatal instrument into the Cund'a. The cleft is called to this day Prabłu-Cut'hára, because it was made with a mighty Cut́hára, or cimetar. This is obviously the legend of Perseus, and the Gorgon's head.

The Brahmá-putra, is also called Hrádimi, as I observed in a former' Essay on the Geography of the Puránias. This word, sometimes pronounced Hládiní, signifies in Sanscrit a deep and large river, from Hrìda, to be pronounced Hrada or nearly so, and from which comes Hradána and Hrádiní. In the list of rivers in the Padma-purára, it is called Hrádya or Hrádyan, and its mouth is called by Prolemy the Airradôn Ostium, or the mouth of the river Hradan: and according to him, another name for it was Antiboli, from a town of that name, called also by Puny Antomela, in Sanscrit, Hasti-malla, in the spoken dialects Hátii-malla, now Feringy-bazar to the S. E. of D'háccá.

El Edrisst says, that in the Khamdan, which joins the Ganges,* there was a Trisula, or trident, firmly fixed in the bed of the river. It was of iron, had three sharp prongs, and rose about ten cubits above the surface of the water, and says our author, its name, in the language of India, was Barsciul, or in Sanscrit Vara or Bara-súla, the most excellent trident. Near this iron tree, was a man reading the praise of this river, and saying, "O thou, who abundantly bestowest blessings; thou art the path leading "to paradise; thou flowest from sonrces in heaven, the road to which thou
"pointest out to mankind: happy the man who ascends this tree, and "throws himself into the river;" when, some one of the hearers, moved by these words, ascends the tree, and jumps into the river, and is drowned, whilst the spectators wish him the eternal joys of paradise. This is really in the style of the Pauránics; and though suicide is forbidden in general, yet there are privileged places, where it is meritorions to kill one self.

According to Ráméswara,* this place is in Asáma, and its name is Vis'va-nád'ha, the place of the lord of the world, or Mahá-déva: I find it is well known to natives of the eastern parts of this country, and is said by them to be eight days to the east of Goda-gráma, and about two east of C'áli-vára, in the spoken dialects Calyá-hára, a strong place on the river. It is a small rock at the confluence of another river with the Brahmá-putra, with the Linga or Súl of Maha-deva upon it, and a small temple erected there by a Ráajá, above 300 years ago. According to Rímes'wara, this place of worship is not mentioned in the Purán'as', but only in some Tantras, and more particularly in the Togini-Tantra.

It appears from the above auther's account, that some people visited this place with a view to put an end to their own lives there, and others cut of religious motives only, to obtain certain benefits. But even this last was attended with much danger, for it was necessary, it seems, to swim or wade in going, and coming back from the rock, and in the mean time there, were Jala-manushas ready to devour the pilgrims, whom they could

[^68]catch. Jala-manusha literally signifies watermen; however, it is never used in that sense; but it implies people, who in a compound shape of men, and of sea or river monsters, devour men and all living creatures, that come within their reach.

Máyá-batúu was a king, who went to worship at Viśva-náth, and having entered the water, he saw three alligators, who wanted to devour him. They were ther tearing the body of the Rájá of Gaja-pur in Mohura-bánja. Máyá-batúu dived into the water, and effected his escape to the shore. There was then the Rájá of Rasanga or Áracan, who was going to perform his ablutions, and who informed him, that these three alligators were originally three notorious gamblers, and cheats, living in the town of Codaru, near Rájá-mahendra** They were obliged to leave the country, and to take refuge on board of a ship, that was just ready to sail to distant countries. A sudden storm from the Malayan mountains in the peninsula drove them northward (it should be S.E.) to the country of Ciráta, which is near Párindra, or the lion's country, or Sinhapar, not far from the lesser China. The ship was wrecked upon the magnet rocks, near the mouth of the C"húré river. The three gamblers were devoured by alligators, and were born again of them in that odious shape, and they renain still in the Brahmá-putra, round a hill in the middle of it. According to the natives, on the day of the Aśocáshtami, in the month of Chaitra, they sacrifice men, buffaloes, goats and all sorts of animals in great numbers, when these alligators spring up to receive the blood into their mouths, and devour the

[^69]flesh, which is abandoned to them. Great rejoicings are made to celebrate the entrance of the Brahmá-putra into their country on that day, when Paraśu-Ráma with his cimetar cut a passage for its waters, through the eastern mountains. It is said however that human sacrifices, are no longer allowed at that place. The magnet or loadstone, is emphatically called Mani, or the jewel, besides which, it has in Sanscrit many other names, more scientific, and which will appear when I pass to the countries and islands in the Indian ocean. In this manner Aristotie styles the magnet $\dot{n}$ Nito the Mani or jewel: for such is the meaning of Aisa, when of the feminine gender.

In the Chatur-varga-chintámani, it is declared, that the Daityas having been once worsted by the gods, fled from before them: but finding no place of shelter, their counsellor Sucrácháryya created an immense magnet like a mountain, which attracted the arrows of the gods, that were pointed with iron. Indra perceiving this, struck the mountain with his thunder, and divided it into numberless splinters: some fell upon the land, some into the sea. One fell into the sea to the sorth-east of Chat tala or Chat t ganh, and this is the reason, that it is so difficult to get over that sea. We are acquainted with two splinters of that mountain; one near the mouth of the river of Negrais, and called by the natives Mario, and by us Diamond Island, which denominations are implicitly synonymous; for this jewel was known formerly in Europe under the name of Adamant, whichoriginally signified a diamond. The French say to this day Aimant, not surely on account of its love of iron. These magnetic rocks, of which we are now voL. xiv.
speaking are mentioned in the Arabian Nights, and in the English translations, they are called the rocks of adamant. The other splinter is near Párindra, or the lion's place in the lion's mouth, or strait of Sincapur.

This magnetic rock, or rather rocks, constitute the Maniolx islands of Ptolemy, which, he says, attracted the iron nails of every ship, that passed that way. There were ten of them, and among the islands of Sincapur, there are about ten larger than the rest. Their name Maniolo is obviously from Mańi in a derivative form Mañ́-yáláa, which is admissible in the present case.

El Edrissi, has placed such another splinter or rock, at the entrance of the, red sea, and calls it Mandeb, which I take to be from the Sanscrit Mani-dwip, and in the spoken dialects Mañi-dib.

Rismestiata has confounded these two splinters into one, by placing the latter close to the shores of the country of Cirát, which does not extend beyond Cape Negrais. The trident of the lord of the world is certainly Vara-s'úla, Pra-súla and sirt-súla, which are denominations implying, excellence and power. The rock on which it stood was of course Vara-śla, Paratsila and Srís ila, or the mostexcellent, and blessed rock, and the river in which it stood was once so called probably, at first by favourite poets, who sang the praises of Mahádéva, and of his linga, not forgetting the rock, on which it stood, nor the river in which it was situated: for we find the Brahmá-putra called by European writers of the seventeenth century

Persilis, and Sersilis, in the easternmost parts of Hindusian and is connected by them with the river Lacshá or Lalcyáa.*

In the long lists of rivers in the Mahá-bhárat and Padma-purána, the Brahmá-putra is called Anta-sila, or the river of the rock of our latter end; alluding to the above rock.

With regard to these Jala-manushas, it is to be observed, that in general -the Hindiús believe, that all living beings originate from an atomlike germ endued virtually with life; but inert till placed in a proper medium; when it becomes actually a puinctum saliens or an embryo. It is indivisible, and cannot be destroyed by any means whatever; but will remain till the end of the world. When a man dies, his body restores to the earth, and to the other elements, all that augmentation of substance, which it had received from them; but the atomlike germ remains the same. The three gamblers, whom we mentioned before, having been devoured by three alligators, their germ of course remained undigested, and unhurt, and soon after they were naturally conveyed into the wombs of females.

This atomlike germ is called in Sanscrit Átibáhica, and is mentioned in the Garud'a-puránáa. ${ }^{\text {Wr }}$ It is called alṣo Váyavíyam, because it goes faster than the wind; and I am assured, that it is mentioned in the Védanta:+

[^70]they say, that it is exactly the sixth part of these atoms, which we see moving in the rays of the sun, when admitted into a dark room, through a small aperture. Its situation is above the nose inwardly, and between the eyebrows. However, some place it, either in the right thumb or in the right toe. Muselmans in Arabia suppose this germ to be the sesamoid bone of the first phalanx of the great toe.*

Yama cannot inflict any punishment on the Átrbatica, unless when united to the Pind́a-déha, for otherwise it is susceptible neither of pain, nor pleasure. I am told, that in the Bhágavata, it is considered as the same with the Linga-saríra: and others assert, that it is really the Yoga-déna of the Lamas in Thibet. Some schools, either reject entirely, these idle notions, or substitute athers of their own.

Ctessas mentions wild men living in the waters of the river Gaita in India, in some part of its course, and from the context, this was in the easternmost parts of that comery. Gaila is perhaps for Khatai, another name, for the Bralmú-putra, because it was supposed to come from the immense country of Khatai. $\ddagger$ Palladius in his account of the Brahmens, says, that there were in the Ganges, dragons seventry cubits long, besides an animal called Odonto, who could swallow whole elephant, and was so much dreaded, that no body durst cross that river, only at the time of the year, when the Brahmens visited their wives, who lived en the other side, for, dur-

[^71]ing that season, the monster was never seen. Palladius supposes this river to be the Ganges, which seems to have been the limit of his geographical knowledge towards the east, but it was more probably the Brahmá-putra. The denominations of Par-silis or Ser-silis are now unknown in India, as well as that of Khamdan mentioned by El Enrissi, who says, that it is a large river, which comes from China, and falls into the Ganges. There is no doubt however, that at an early period it was current in India, for it is the Cainas of Pliny, and the Doanas or Daonas of Prolemy. These two words, being joined together, make Cain-Doanas. In Sanscrit Cáyan-dhu, and in a derivative form, Cáyan-dhavä or Cáyan-dhau, Cáyan-dhauní or dhauná and Cáyan-dhuní, would signify the river of Cáya or Brahmá, and of course it is another name for the Brahmá-putra, implying exactly the same thing. Now Dr. F. Buchanan says, that the western branch of the Airávatí is called Kiayn-dwayn, which, in the language of the Burmán empire, signifies the fountain of Kiayn, which comes nearly to the same thing.* The case obviously, at least to me, is, that these two rivers come from a country called Kiayn or Cayan, and the same with that called Cáháng in the Alphab. Tibetanum. It is described as an immense country between China, Tibet, India, Pegu, \&c. It is annexed to Tibet and is to be pronounced Cáhánh or Cá-ánh.

Edward Terry, and others I believe, say, that the Sersilis comes from the borders of Canduana, the capital of which is Carha-tanka. Canduana is unknown now, and is never mentioned in any book that I ever saw; but it

[^72]goes by the name of its supposed capital Cara－háfaca．It is mentioned twice in the Máha－bharata，where it is called in the list of countries Hátaca and Cara－hátaca．In several lists of countries from the peninsula，and published by Dr．F．Buchanan，and in another from that country also， given ito me by Colonel Mackenzie，the country of Cara－hátaca is mention－ ed．：However it is absolutely unknown in this part of India；but I do not think that it was the name of city，but of the pool of Brahmí，the water of which is declared，as we have seen before to be Hálaca，and Cara－ hátaca．

In the list from Áví published by Dr．F．Buchanan⿱⿱㇒⿻丷木⿴囗十一 there is a country called Kian－dlan，and that gentleman declares，that the Kiayn－duan comes from the country of the Kiayn tribe．According to the journal of the four Chinese merchants，in their way back from Siam to their native country，and inserted in Du＇Halde＇s China，the river of Siam comes from the mountain or mountainous region of Kyang－daw．Hadr－Khalifa men－ tions，in that very country；a river called also Khamdan；but he meant by it， it seems，the river of Cambodia，for he says，that the town of Khancu，was situated upon it．This is not true of the town，but may be of the country of that name．For Ais Bergendi says，that it was rather the name of the country，and that the town was called Khaiha，and is probably the same place，with a fine harbour，called at present Catanh，with an island in front， and of the same name．t This harbour is no longer frequented，and even

[^73]hardly known. However it is probably the Cathigara of Proleny, and the Caitaghora of El Edrissi, the fort and lown of Catanh.

Thus country of Cayan or Cayan-dhu is mentioned by M. Polo, with a river called Brius, which is the Brahmá-puira. This region, says he, is to the west of Carayan, and an extensive country. . As M. Polo speaks of these countries from report only, he is generally inaccurate, and it is a difficult task to recognise the countries he speaks of, and to arrange them properly. Be this as it may, he says, that Carayan is eighteen days from the city of Mien, which is $\dot{A} \dot{0}$, and that the three first days, you descend through frightful precipices. Mr. De Guignes shews, that it was part of Yunnan,* and I beg leave to add, that it extended a great way towards the west, as far as the country of Cayan-dhu, on the eastern banks of the Brahmá-putra. It extends along the northern frontiers of Mani-pur, from which it is separated by a ridge of mountains, called Carrun to this day, according to Colonel Symes. ${ }^{+1}$ To the west of Carayan, and of the Corrun hills, was the country called Cayndu by M. Polo, and which was bounded, towards the west, by the river Brius. This is the Brahmá-putra, which is often styled, if not called, the river Biryyá, because it is the efflux of Brahmá, and this word is always pronounced in the enst Birjja. "The country to the north of Ásáma, on its banks is called Bramasong in the Alphab. Tibet., and in the Puránáas, Brahmáa-tunga, in the list of countries. It is called also Bregiong because it is on the banks of the river Biryj or Birjyam, in a

[^74]derivative form. The Capucins, who had a small convent in Racpu, to the north of it, had some correspondence with the petty king of Bregiong.*

This Bralimá-cunida, from which issues the Brahmai-putra, is the same which is called Chiamay by De Barros, and other Portugese writers. De Barros calls the Brahmá-putra the Caor river, and says, that it comes from the lake Chiamay, and from thence it goes to the town of Caor, after which it was denominated, thence to Sirote, to Camotay, and afterwards into the sea. Caor is the famous town of God'a, or Gaur generally, called Gorgánh, that is to say, the town of God'a. Sirote is probably Sarada a famous place of worship mentioned in the Cálicá-puráńa, and Camotay is the place of Cámácshya-dévi, called also Cámá-pit'ha, or the seat of Cámá-dévr. The whole country is also called Cámá-pit' $h a m$, pronounced formerly Camptá and Camtá. +

This is the country called Pitan, by some of our writers of the sixteenth and seventeenth centuries, and which was separated from Candwanah, by the river Persilis according to Edward Terry, who says, that this river (which is the Brahmá-putra) comes from the country of Gor: and this is in some measure true for it passes through it, in its way into Bengal. The Chiamay lake was said to be 180 miles in circumference, which may be true of the country of Sayammay or Chiamay, noticed by

[^75]Dr. Buchanan.* Ortelius in his map of Asia in 1580, calls this lake çayamaÿ, with two dots on the letter $\mathbf{Y}$, and with the cedilla, or dash under the letter $\mathbb{C}$, and to be pronounced Suyamay, as it is writen by Dr. Buchanan; but in his map of India, he spells it Chyainai, which sounds exactly like Chyamay in English. He mentions also the country of Camotay, the towns of Chirote and Caor.

Four rivers are supposed to spring from this lake, but except the Bramná-putra, the others must issue from it, through subterraneous channels. The Paurranices delight in such mystical communications, and they are really very numerous in India. But this sort of paradise, with four rivers issuing fron it, is obviously taken from our sacred books. With the Jews we have one, the Hindús another: the people of Tibet have one of their own, and the nations' beyond the Bralmá-putra claim very properly the same priviledge.

The Brahmáa or Brahmí river, another name for the Brahmá-putra, is called Cáya, one of the names of Bramiá", hence the river of Avá", sup. posed to spring from the above lake, is called Cay-puimo, or the Burman Brahmá-putra; for the Burmán country, is also called Pummay according to Dr. Buchinan, and Puma-hang by the four Chinese merchants, mentioned by Du Halde. The two heads of the Doanas; and those of the two next rivers the Dorias, and the Serus or river of Aváa in Ptoleny's maps, do not correspond with the mouths, he has assigned to them on the sea shore. This mistake originates from the imperfect notions which he

[^76]vOL. XIV.
had of the geography of so remote a country, which he fashioned into a map according to some pre-conceived opinions, and an erroneous system of his own. The mouth of the Brahmá-putra, for instance, does not appear on the sea shore, even in our most modern maps, and the Pauránics, in their geographical diagrams, make the Hrćdiné or Bralmá-putra, with the Pávaná or Ává river to flow toward the S. E. The source of the eastern branch of the Doanas, or Brahmâ-putra, is really at the Brahmácunda, and thus far Prolemy was right. To the upper part of this river through Tibet, he properly gives the name of Bautes or Bautisus. Bhoti$s u$, in the language of Tibet, sigmifies the water or river of Bhota, the Sanscrit name of that country. He did not know however, what became of it beyond Thogara or Tonker. The next river is the Meghanád or Megha-váhana, in the spoken dialects Meghwán, and Meghnáo. It is a well known river, and the general drain of the waters of Silket, and adjacent countries. It begins I believe, to be so called near Azmarigunge, below the junction of two considerable rivers, the great Bacrá, and the Baleśwarg from Silhet, and commonly called Bowlee. The original stream is the great Bacrá, which according to the Cshétra-samása, comes from the country of Hed'amba, now Cachar or Cuspoor, to the eastward of Silhet. It is remarkable, that the Brahmá-putra, on being joined by this inferior river, and of obscure origin, being from Megha or the clouds, loses its name at once. The Megná, now an immense river goes into the ocean, but, pror perly speaking, without joining the Ganges; though they approach very near to each other.: But the mouths of the Ganges and of the Branraciputra, are so masked by large, and numerous islands of various sizes, that they are by no means obvious from the sea, like that of the western branch
of the Ganges. Yet there is no doubt that formerly they mited their streams, and that they will again at some future period.

The Meghwấn is the Magone of Megasthenes, as cited by Arrian, as one of the rivers that fell into the Ganges.

The next river is the Dumurá or $\operatorname{Dumbura}$, for the letter $\mathbf{M}$ easily admits $\mathbf{B}$ and $\mathbf{P}$ after it. In the lower part of its course it is called the Carmaphullí, and falls into the sea at Chátgänh; but Prolemy has carried its mouth, and that of the Doanas into the gulf of Siam. According to the CsFétrasamása; it is the eastern boundary of Traìpura or Tippera, and fourteen Yojanas or about 105 Britisfí miles from Agratolá, now Núr-nágar, and formerly the capital of that country. Dumurá is a very common name in India, and in the spoken dialects generally pronounced Dumré, Dumriyá, Dumroy, \&c. It is the river Dorias of Prolemy, for Domrias. He has placed its source in some country to the south of Salhata or Silhet, and he mentions two towns on its banks; Pandassa in the upper part of its course, but unknown; in the lower part Rangiberi, now Rangámati near Chátgánh, and Reang is the name of the country on its banks. On the lesser Dumurá, the river Chingree of the Bengal atlas, and near its source is a town called there Reang. Rangámati and Ranga-báti to be pronounced Rangliar: imply nearly the same thing.

The next river is the Pávaní from Pavana, which in lexicons, as in the Amara-cośa, becomes in a derivative form Pavamán or Paumán. I believe
it is so called because it flows through the country of Pama-hang* or Burmá, which according to Dr. F. Buchanan is also called Pummay. Hence it is, that the first Portuguese writers, called one of the supposed branches of the Cayan river, flowing through the Burmán country, Cay-pumo, and by Pliny it is called Pumas or Pumán. The Pauránícs, as usual searched for a Sanscrit origin for it, and derived it from Pavana, which signifies wind. In the Cshétra-samása it is called Su-bhadrá, or the beautiful and great river, The river Brahmotár', says the author, "flows by Mani i-pura, and going toward the east, it falls into the Su-bhadrá. The Pávaníor Paumán, called also Su-bhadrá, is the Airávatí, which flows by Amará-pura. It forms the upper, or northern part of the river, which Prolemy calls Serus, the lower part of which is the Menan, which flows by Siam. The true spelling of the name of this river, and its Sanscrit origin, if derived from that language, are rather obscure, as it is not mentioned in any book, that I have seen. I suspect however, that it is hinted in the Garud'a-puráña, in a curious route performed by the souls of all those, who, die, at least, in this part of the world. These souls, having assumed a pygmy form, no bigger than the thumb, which is compleated in twelve days after the decease, on the thirteenth are seized by the servants of Yama, and carried through the air to Yama-puri or Yama-cota, on the high grounds in the center of the Malayan peninsula, and called Giam-cout (Jamu-cot ta $^{\text {a }}$ ) by Muselman writers. There they remain one month, and thence go by land to Dharma-puri in the N. W. quarter of the world, on the shores of the western ocean, thiere to be judged by Yama, with the countenance of the

[^77]Dharma-rásá or king of justice; for he has two countenances, one remains at Dharma-puri, and the other at Yama-puri. There are two roads, one for good men, called Saumya or beautiful, the other Castitamárga, or the painful road: for now they travel on foot.

In fifteen days they reach Sumi-pur, where rules Jangana with the dreadful countenance. When they see the town and its ruler, they are much afraid; and there they eat the funeral repast of the third pacsha, or of the first montli and lialf, offered by their sons.

Thence they proceed, through dreadful forests, to Váréndra-nagara; where they eat the funeral oblation of the second montli, and receive some clothes, and then they set off for the next stage. The district of Váréndra in Bengal, between Gusula and D'hácía, is well known.

Or the kingdom of Jangama we have some knowledge, and it is about half way between the Malayan peninsula and Váréndra. Its name is written Jangoma or Jangomay by European writers, and it is a great way to the north of Siam. It has the Laos to the east, and the country of Ává, or the Burmán empire to the west. Its capital Sauri, still unknown to us, is upon a river called, I suppose after its name, Saura or Sami.

Ptolemy has delineated tolerably well, the two branches of the river of Ává, and the relative sitnation of two towns upon them, which still retain their ancient names, only they are transposed. These two towns are Urathena, and Nardos or Nardon; Urathena is Rádhana, the ancient VOL. XIV. 5 U
name of Amarí-pur, and Nardon is Nartenh on the Kayn-dween.* For Nardon is a town according to Proleny, and by no means the name of a well known plant, and which I believe does not grow in that country. He says, that it was situated in the country of Rhandamar-cota, literally, the fort of Randamar; after which the whole country was denominated: but of the town itself he takes no notice whatever.

The Sanscrit name of this country is Césora, and Hedamba or Hidamba; the king of which was killed by Bumis, who fell in love with his sister Hid́anbá, and remained with her a whole year. From this union, are descended the present Rájas of that country, who come occasionally to Benares to worship. Hib́ameá, and his subjects were cannibals, and he and his sister wanted very much to eat BHinA, as he was fat and plump, Hísambá was also called $\dagger$ Ruńda-mundáa, because, whenever he could catch any unfortunate traveller, he made his body Rund'a or headless; and also he made his head Muńd'a, that is to say, he cut it off and separated it from the body; for it is customary with men-eaters to cut off the head imediately, and to throw it away. It was enough to call him Rund́a or the Rundédájá, because this necessarily implies the other; but Ruñ'a-mumed'a is an alliteration, highly delightful in the ears of Hindis, who are great admirers of such a jingle of words. However, a field of battle though strewed, both with Runda and Murda, is simply called Rundica, instead of Rund a-mundica, because the beauty of the alliteration is entirely lost, by this compound assuming a derivative form. Runda

[^78]was the name of every Rajảa of Hed"cmbá to the last, who was killed by Bhima, who for that reason, was, I believe, surnamed Ruń da-míra, or he who killed Runida: thus the famous king Dhundha-mára was so called, because he killed the Daitya Dhunduu. Rund ámára-coĺa signifies the fort of him, who killed Ruvía. Rund́a was a Daitya, and a native of Sonit-pura, near Gwál-párá, on the borders of Asáma, and that place was the metropolis of the Daitijas or devils, whilst the gods or followers of Brammá, lived to the westward of the Brahmá-putra. The country of the Daityas, extended from that river eastward, to the banks of the Irávati, and was parcelled out amongst several chiefṣ ; but he of Hedambit, conquered them all, and Hielow and Vátapr, two Daityas, who resided at Sonitpura, were so much afraid of him, that they left their country, and fled to distant places; for he was remarkably fierce and cruel. His kingdom was very extensive, and was three months in extent from north to south.* Pliny calls the river of Avá, Pumas or Puman, in the objective case; and says, that many nations in that part of the country were called in general Brachmanx, it should be Barmánoe. One is particularly noticed by him, "the Macco" calingæ, with two rivers called Pumas, and Cainas; both navigable, "but the Cainas alone, says he, fall into the Garges." It is therefore the" Cayana, or Brahmá-putra. The Maga-calingas are the Magas or Mug's, living near the sea shore in Chat gánh, and Arácan.

Having thus described the heads of such rivers toward the east, as were known to the Pauráríics, let us now proceed to the sea shores.

[^79]Prolemy says, that the easternmost branch of the Ganges was called Antibole, or Airradon. This last is from the Sanscrit Iradana, and is the name of the Bratmá-putra. Antibole was the name of a town situated at the confluence of several large rivers to the S. E. of D'Fáccá, and now called Fringy-bazar. It is the Antomela of Pliny, and its Sanscrit name is Hasti-malla, in the spoken dialects Háthi-mállá. In the Swarodayamáhálmya, Hasti-malla, as well as the country about it, is called HastiBandh, because the elephants of the Rájá were picketted there, or in its vicinity. It was, says Pliny, situated at the confluence of five rivers, and on that account it is called Panchanada-nagara in the Harivansa.

The next is the Phame or serpent river: it is mentioned in the Mahár Bhárat, under the name of Airával, a large sort of serpent. On its banks lived the famous Uxurí, daughter of Airávat, or Pannaga, or the serpent king: from her, and Arjuna, the Pandwan, are descended the present Ráajus of Trai-pura or Camillub. This river is the Fenny of the maps.

Let us now pass to the Carma-pzalli, or Chaf gánh river: It is mentioned in the Scanda-purána, in several Tantras, and Geographical Tracts. In the Bhervanct-cosa, it is declared, that it is so called, because there Carma, or good works do blossom and flourish most luxuriantly, so as to produce fruit most abundantly. In short, every thing on its bank flourishes in that manner, such as Dharma, or religious doctrine, Carma religious deeds, Puńya or righteousness: even the very spot or gráma, flowers in that wonderful manner; for Chat'grám is called in the Puránas, Pluulla-gráma. Chatía is a royal mat spread under a tree, in thoze times of simplicity
of manners: Pat́ta, or Pit'ha, any seat, with the addition of Phulle, implies a blessing to the royal mat, to the royal seat. This explanation of the meaning of Carma-prulli and Chaíta-gráma, is in the Bhúvana-cośa.

In the Scanda-purááa, * the words Patía and Charít a are acknowledged, as the names of Chat gánh, but with another meaning. Déct, having destroyed there, the Daitya Mamishásura; his bones, the flesh being rotten, appeared upon the ground like immense flag stones, or Pat́ana in Sanscrit, and Chat tana in Hindi. The right or southern point at the mouth of the river, is called Pengui, because it is towards Pengu or Pegu: the left or northen point, on the side on which the town is situated, is called to this day Pat́anh. There can hardly be any doubt, in my humble opinion, but that this town is the Pente-polis of Proleny, for Pat ta, or Pat tan-phullt, the flourishing seat.

The Carma-phalli is also called, though rarely Carna-phullh, and it is the Carnabul of the-Edrissi, who wrote about the year 1194: but that geographer has bestowed that name, rather upon the town of Chaí gáah, because situated on its banks.

The Carma-phull, as I observed before, is called in the upper part of its course Dumburá, Dumurá, or Dumriyá: on its passing through the hills, it assumes the name of Carma-phulli: but its original name is Bayuli or

> * Secrion of the bridge of Ráma.

YOL, XIV:

Bayulú.* In the Bhivana-cośa, it is declared, that it flows through the country of Ari-rájya, or kingdom of ÁrI, where it assumes the name of Náblu, according to the Cshétra-samása, and is commonly called the Núf, and Teke-náf. This river is called in the Bhúvana-cośa, Héma or golden river, probably because it comes from the golden mountairs, stled Méma, Canchura, Canaca \&c., which signify gold. In general all the rivers of this gountry are considered as braches of the Carma-pulli, some and actually so; others are so only in a mystical sense, This accounts for the itland communications between the Carma-phulli, and the Aracin river, as delineated in former maps. It is not to be traced; as yet, beyond Ránérs or Rámu, thoigh it may exist still further south. In the first map of the Bengal atlas, this inland communication by water is well delineatell from Chat gánh, to Chacoríyá; and Mr. Bartholomew Plarśted, Mad rine Surveyor carries it as far as Tâmu. ${ }^{\dagger}$. In the Cshérit-samása, it is asserted, that the river to the south of Ramu, about two Yojanas, or eight-Cos, is an arm of the Compa-phuth, and the bowndary of the Barmio country, or Arcican; and the author says, that there are in that country, five rivers or branches of the Carma, the Icthamata, which flows by Rámuna or Rámu; the Sančhé, the Sunkar of the maps: the Srimatí: the Swarnáchar', called in the spoken dialects, according to our author, Sonícharé, but these two are unfuown to me. The last is the Cesárá, in the spoken dialects Cucl?haŕa, and on its banks is Havilu-dâra-grómá,

[^80]commonly called Ranguna, which is inhabited by Magas, and is situated amongst hills; and from it this river is called Havildúra in the maps.

The river we mentioned before, two Yojanas to the south of Ramu is called Rajju, which in Sanserit signifies both a rope, and a bamboo. Rä̈u is also synonymous with Guńa and Damc; which last is the name of several places on that const. Perhaps these words imply, that there was either a cable, or a boom of bamboos lashed together, laid across the river. There the king of Śnitpuif; Naraca, placed the Linga or Phala of Mahá. Déva, under the name of Ádya-nátha or Ádi-natha, the primeval lord, Linga and P7allus. In the Bhuvana-cos $a$, it is said, that this place was laid waste by the Yeatuts, or Muselmans. Another name for it, was Phalgunagar or town of Phalauna, having been built by Arjuna, called also Phalguna. In the Cshérora-samisa, it is said, that it was near a river, and that it was built by a man of that name, and it is, says our author, commonly called Phangria or Phalgun. Another name for it, he adds, is Pharaigáara, and this, my opinion, is the Baracurci of Prolemy: Phalgun is called Palong in the maps, with the ejithet of Burra or the great, which might have beeir the case formerly.

To the south of the Rajjoo, about forty miles is the river Nabin, vulgarly Náf, because it proceeds from the navel of a certain god, who resides amongst the hills. It is more generally called Teke-naf, and in official reports, made to Goverument, I understand that it is generally so called. Teke-náf implics, that it flows through the country of Teké, written in some Sanscrit books Tecu, and Tleceu, to be pronounced Tecoo and Telyyou.

It is now the boundary of Aracan; and in some maps, it is called the Dombac river, from a place of that name situated on its banks. The Sanscrit name of Arácan is Barmá, Barmán and Barmánaca proper; by the people of Pegu it is called Takain. Dr. F. Buchanan* says, that Thock is the name of a tribe, living on the eastern branch of the river Naaf; and who sent a colony to the upper parts of the Carna-fulli; and this circumstance is recorded in the Bhúvana-cośa, in the these words: "at ". Carcandaca, in the woods, will come a Tecu-rájá, who will abolish all " distinctions of casts; but Nágárjuna will destroy him." In the Cshétra--samása, it is called Carcándu, near the Carma-phulli, and its present name is Cácundi, says our author. It is also in the country of Cemuca, commonly called Ceu or Ceuncá; and its inhabitants Ceuci or Kookies. A respectable native of Rangoon, who came some years ago to Benares with many persons of that country, informed me, that he had been at Arácan, and that he understood, that the bulk of the inhabitants were of a tribe called Tek or Teké; and from it the country was called Tekain or Takain. He suspected that Tecain, Yecain and Recain, might be the same name differently pronounced, and indeed Dr. Buchanan says, that indistinct articulation is fashionable through the Burmán empire, and the adjacent countries.

The next river is the Mahń-nadí or great river, which flows by Arácan. There is Sila or Saila-pattana, or the stone city, the seat or throne of the Maga Rájás.

[^81]There in the Maku-nade is Venu-gartta, or the bamboo fort; but the sea overflowing will destroy it, and leave in many places shoals, and sand banks. This is the second inundation of the sea, which will do so much mischief to the whole country. The first, it appears from our author, affected chiefly the shores of Chat́gánh. This bamboo fort; 耳 suppose has been rebuilt more inland, for it still exists, and is mentioned in a French map by the Sr. Robert in the year 1751, where it is called Fort de Bamboux. In a sketch of the mouth of the river of Arácan by D'Anviles; it is inserted, but without a name. It is placed there about sixieen miles to N. E. of the pagoda, at the entrance of the river on the left side.

Venugartat is literally a bamboo pit in Sanscrit, but in Hinde it is either Venu-gár or Venu-gáráa: the first, signifies a bamboo fort; the second, a bamboo-pit, which last is hardly admissible. The town of Aracan may be called with gieat propriety the stone city, being surrounded by sieep craggy rocks, cut artificially like fortifications.

The Arácan river, in the Bhúvan-cośa, is called Maháanadt́, or the great river; but its real name among the natives is unknown. Ptoleny calls it Tocosanna, the true pronunciation of which is, I believe Teku-shán or Teke-shán: and we have in that country the Teke-náf; the inhabitants of Aracan are of the Telecu tribe, and the country is called Takain, and the word shán is certainly obvious in Rau-shán another name for Arácan, and I believe, that $R u$ or $Y u, R a i, Y a i$, are the names of a tribe in that country: for, says Dr. Buchanan, what is written $R \propto$, is pronounced $\boldsymbol{Y} \propto$ in that country. The meaning of Shán is unknown; but I take it to be an worer kip.
honorable title. It is says Captain Symes, a very comprehensive term, given to different nations, whether independent or not.* It appears to me that Teku-shán, was pronounced by the Portugituse Tourscan, for Telecshán, or Tecwá-shán, in a derivative form from Tecu-shán. Portuguese writers mention also another district called Co-Dowascan, which I suppose to be $C u$-Tecwá-shán, and to allude to the invasion of the $C u$ or $C u c i$ country by the Thooke tribe, as mentioned by Dr. Bucuanan. Mr. D'Anville in his map of India of the year 1752, mentions four places in the district of Chatgánh; three of which belong to Arácan: the fourth or Cu-Tecwáshán, belongs to Chat gánh; being situated in the upper parts of the Carmaphulli. The three other places are Towascan, or the town of Arácan: Sindar or the town of the moon, in the dialect of that country, and called Vidhu in the Cshétra-samása, synonymous with Chandra or Sundar, is some where near the Teke-náf: the last is Soré, probably the town of Zara mentioned by Portugaese writers, as belonging to Arácan; its situation is unknown, but it is probably to the south of Arácan.

Witi Portuguese writers Towascan is not the name of a river but of a town, which, I conceive is no other then Aracan, the metropolis of the Teke-shán tribes. Proceny places on the Tocosanna the metropolis of the country, and calls it Tri-lingon, a true Sanscrit appellation. Another name for it, says our author, was Tri-glypton, which is an attempt to render into Greek, the meaning of Tri-linga or Trai-linga, the three Lingas of Mahi-déva, and of which the Tri-śul, or trident is the emblem.

[^82]It is often represented by three perpendicular cuts, parallel to each other; and this in Greek is called Tritghypton. Arácan is part of an extensive Wistrict called Tri-pura or Trai-pura in the Purañas, or the three towns and townships, furst ${ }_{2}$ inhabited loy three Daityats, the maternal uncles of Rávana. These three districts were Camilla, Chaítala and Barmánaca, or Raśáng, to be pronounced Ra-skính or nearly so; it is now Arácan. Maná-déva destroyed these three giants, and faxed his Tri-śil in Camillá, which alone setains the name of Tri-puray the two other districts having been wrested from the head Rajá. The kings of Arúcan and of Camilla, were constantly striving for the mastery, and the former even conquered the greatest part of Bergal, herce, to this day, they assume the title of lords of the twelve Bhúniyás, Baattis, or principalities of Bengral. At such times Arácan was the metropolis of the Trai-puras, and of course it became the seat or place of the Thi-linga, or three fold energy of Mand'-déva, the emblems of which are the Tri-siul, and the three perpendicular cuts. Ptolemy says, that in the country of Tri-linga, there were white ravens, white parrots and bearded cocks.

The white parrot is the Cácáteú ; white varens are to be seen occasionally in India, as well as in Europe, and their appearance is considered in this country as most inauspicious. Some say, that this white colour might have been artificial, and the result of a certain liquid preparation, which after the removal of the old feathers is poured upon the new ones. The colour will last of course, as long as these feathers do ; but will disappear with them, at the next moulting season. (Muselmans in this country very often dye their beards likewise.) The bearded cocks have, as it
were, a collar of reversed feathers, round the neck and throat, and there only, which gives it the appearence of a beard. These are found only in the houses of native princes, from whom i procured three or four; and an told that they come originally from the hills in the $\mathbb{N}$. W. parts of India. We have also bearded eagles in Europe.

The Mahá-nadt, or river of Arcican is the last on that coast, in our Sanscrit records, and the district of Sandowy, called also Thayndwa or Saindwa by Dr. Buchanan, and declared by him and* Captain Symes, to be the southernmost division of Arácan, is also the most southerly district of the empire of the followers of Brahmá, or India, along that coast, ending in about eighteen degrees of latitude north. In the Bhúvancu-cośa, it is called Sandwipa, but, I believe it should be Sandwi. In that district is a river, and a town called in modern maps Sedoa for Saindwa, and in Ptolemy Sadus and Sada. Between this river and Arácan, there is another large one concealed behind the island of Cheduba, and the name of which is Cátá-baidá or Cátá-baizá. This is the river Cata-beda of Prolemy, which, it is true, he has placed erroneously to the north of Árácan; but, as it retains its name to this day among the natives, and as it is an uncommon one in that country, we can lardly be mistaken.

As that part of the country is very little frequented by seafaring people, the Cátá-baidá is not noticed in any maps: or sea chart whatever. It was first brought to light by the late Mr. Reuben Burrow an able Astronomer,
and who visited that part of the coast by order of government.* In the language of that county Cátá is a fort, and Byeitzá or Baidzá is the name of a tribe in that country. $\downarrow$ Thus Cátá-baizá is Fort baidzú, and BaidzâCátá is the Baizá-fort.

The island of Cheduba, opposite to this river, is called very properly Bazacata by Prolemy, and Dr. Buchanan informs us, that the letters $T, D, T h$. and $S, Z$, are almost used indiscriminately in that country, where even indistinct pronunciation is fashionable.

In the countries of Chatéala, and Barmánaca, Ráma-chandra began his first bridge, in his intended expedition against Rávana. The abutment took up the whole of these countries; and then Rama-chandra carried on his works, directly towards Subela or Sumatra, and had nearly reached that island, when by the advice of Vibhishan king of that country, he left off, and began another bridge at Rámeśwara in the south of India. Of the former bridge seven piers are still to be seen, which form the archipelagos of the Andaman and Nicobar islands, exhibiting vast ruins consisting of all the rocks, which surrounded them. The Hindús fancy that all ledges of rocks, and all islands placed in a line are the remains of bridges made either by the gods, or by the devils, for some particular purposes, generally unknown to us at present.

> *.Asiatick Researches, Vol. 4. p. 326.
> + Asiatick Researches, Vol. 5. 224.
vol: xyy. 5 Z

The Portuguese maps exhibit only four rivens on that coast; that of Chat gánh; the Chocoriú, to be pronounced İhocoriá; the river and gull of Rámeu, and the river of Arican. The gulf of Rámut, now called the bay of Cruzcool, has a considerable river, that falls into it, called Mushcolley after which is denominated the opposite island, but called by our seafaring people Mascal, this appellation being more familiar to them; but in the Portuguese maps, there is no name affixed to it. The name of the island to the north of this, is Cuccura-duripa, but in the spolsen dialects. Cuccur-díá or Cuccur-diá, or the island of dogsi. In these dialects a dog. is generally called Cutúu; and from Cutó-dwíp I suspect they have made Cuttub-dét. There is a place in it called Culecrá-honser â, which, the pilots. say, signifies Dog-swimming Creek. It is called Quoqor-divá by Landschot in his map of India, and Cuccuri-divá by F. Monserrat.**

The course of the Ganges has not been traced beyond Gangautri, for the stream, a little farther, is entively concealed under a glaciere or iceberg, and is supposed to be inaccessible. Be this as it may, the source of the Ganges is supposed to be in a basin called Cuńda, because it is in the shape of a drinking vessel, so called in Sarnscrit, and Píyálá in Hindi. Thus the source of the Nile, and that of the Jordan, was called Phiala, or the cup in Greek, because in that shape, and the water, forcing its way at the bottom, re-appeared at a considerable distance, through subterraneous channels.

[^83]Tins is supposed to be the case, with our Cund d, which is said to be deep, and that water is constantly oozing, and dripping from its steep, and guttered sides, forming many little streams, which are called the hundred weepers, from the manner in which they fall, and also from the noise, they make.. These falling ta the botlom, form a considerable stream, which, they say, forces its way through channels, either under ground, or under the glaciere. This place is said to be inaccessible to mortals, and that the above particulars were revealed to certain Munis.* This stream re-appears at Gangquitri, where is a fall of no great magnitude. Below the fall, in the middle of the river, is a rock styled the head, or top of the Linga of Maná-deya. The Ganges tumbles over it, hence this stone is called, from that circumstance Patácni, or Putcani。 From thence the river goes to the Awartta of the Ganges, or of Hara, Hari and Bralumá; and thus we have Gangáwártia, Brahmáwartia, \&\&c.; but it is more generally called Hara-dwára, the gate or pass of Hara. Awartta literally signifies an enclosed place of a circular form, and is more particularly applied to places of worship; but in general these places are circumscribed, by an. inaginary line only.

The Paurúnics, declare, that the Ganges, issuing from under the feet of Visuru, under the pole, flies through the air, brushing the summits of thelighest mountains, and falls into the Cund'a of Brahmá, which is acknowledged to be the lake of Mana-saravara, and from thence shrough the air agaï, it alights upon the head of Mahś-déna, and remains entangled in

[^84]the lock of hair on his head, from which it drops continually into a bason beneath, called Bindu-sarovara or the dripping pool, but this cannot be the same with our dripping Curd'a.

Thrs curious account of the origin of the Ganges, was not unknown to our ancient writers; for Pliny says, that the Ganges, after such fatiguing a journey, brushing the tops of mountains in its way, as Curtius says, rests itself at last in a lake. Mr. Janes Fraser of the Civil Service, in his survey of the source of the Ganges, saw the peaks which surround this hollow, but the road to this holy Curd'a was impracticable, and this holy place remains inaccessible to this day.* Below Haradwára the Ganges sends forth several branches, which rejoin the parent stream at various distances. These branches are in general the remains of old beds of the river, at different periods.

On the western side, they form an almost uninterupted chain as far as Furruckabad, according to the latest surveys of that country.

These branches have various names; but in general, they are called by the country people Buri-Ganga, or the old Ganges. Another name is Bán-gangá, or the reed river, because, whenever the Ganges, or any other river forsakes its old bed, this old bed and its banks are soon overrun with Bána or reeds, which form numberless thickets, in Sanscrit Saraban: and these two denominations, are used by the learned, paricularly the latter.

It is by no means an uncommon name in India, as well as Saráarati, or abounding with reeds: It has also the name of the Ráma-gangá, to the eastward of the Gangers.

The only branch of that name; which can attract our notice, is to the westward, springs out at Hardwár, and rejoins the Ganges at Bánghatte. This part is well delineated in the general map of India. It springs out again, according to the late surveys, at Succur-tuul, passes to the eastward of the ruins of Hastiná-pur, and rejoins the Ganges at Gur-mucteśwar. 'This. Bán' or Saraban river was formerly the bed of the Ganges, and the present bed to the eastward was also once the Búńn or Saraban river,

This Pronemy mistook for the Rámargangú, called also the Bání, Saraban and Sarávatí river. For the four towns, which he places on its banks, are either on the old, or on the new bed of the Ganges. Stomat; and Sapotas are IIastuaura, or Hastintanagara on the odd bed; and Sabal, now in ruins, on the eastern. bank of the new bed, and is commonly
 and eleven to the west of the present Ganges: and it is called Hastnawer; in the Ayin Acberi.* Eorta is the Awartta, we mentioned before, or Har. dwár. It is called Arate in the Peuting, tables, and by the Anonyxious of Rívenńs.

In the immense plains of Ank-Gangam or the Gangetic provinces, there are two declivities or descents. One towards the east, and the other.
from the northern mountains towards the south. This precipitates the waters of the Ganges, against its right bank, towards the south, and makes them strike with violence against the Pádanta or Iádantica, the foot's end of the mountains to the south, and which begins at Chunär, and ends at Raj-mahl. The soil of the country to the south of the Ganges consists entirely of native earth, stiff, of a reddish colour, and strongly fortified with huge rocks, and stones of various sizes. The soil of the country to the north, as far as the mountains, is entirely alluvial, with large tabular concretions of Cancar or Tophus aquatiits. The depth is unknown, as excavations have been made to the depth of about 108 feet without coming at the bottom, or to the native earth. In the upper parts of the course of the Ganges, as far down as the pass of Sancrigrali, its aberrations and wanderings are confined, within narrow limits, and its encroachments and devastations are comparatively trifing. It is a female deity, and in her watery form, is of a most restless disposition, seemingly bent on mischief, and often doing much harm. This unrelenting disposition of hers to encroach, is greatly impeded, and checked by the Padanti, or the foot of the mountains with its rocky points projecting into the stream such as Chinár, Mulgir, Sultan-gunge, Pattergotta, Pointy, Sancri-gali and Ráj-mahl.

The word Padanti is pronounced Ponty in the spoken dialects, and is spelt Paentee by Dr. Hunter, in his Dictionary. But by Pointy we generally understand now, that rocky point, which is near Patter-golta.

The Sanscrit name of Chunar is Charanadri, or Charanáairi, which is nearly synonymous with Pádantica. This last is mentioned in the Raina-cosa, and in some Purááas, where it is oalled Pádapa.

Between these huge rocky points the Ganges is constantly at work, excavating deep bays and gulfs, which, after long periods, shee flls up entirely, and then scoops them out again. Even the huge rocky points, I just mentioned, have by no means escaped her unrelenting activity. They are cut down almost perpendicularly from top to bottom; and it is written in the Puránas, that the Ganges has carried away the half of the hills of Churáar, and Mudgir; but there was no occasion for any written authority in the present case.

IT is written in the Váyu and Vishiu-puranas, that IIastiná-pur was destroyed by the Ganges, early in the Cali-yugra. The Vayu places this event in the sixth generation after the great war, and the Vishnu-purana in the eighth; that is between eleven or twelve hundred years before our era; and it is recorded there, that the seat of empire was transfered to Cauśambi near Allahabad. It is well known that the old site of Pátaliputra or Patna, has been entirely carried away by the Ganges, and in its room, several sand banks were formed, and which are delineated in Major Rennell's map of the course of the Ganges with his usual accuracy: However Colonel Colebrooke, Surveyor General, having made a new survey of the river, found that these several sand banks were consolidated, into an island about sixteen miles long, and which masks entirely the mouth of the Gantaci, nay it has forced it, in an oblique direction about
sis miles below Patna, whilst in Major Renneta's tine, it was due north from the N. W. corner of that lown, and in sight of it.

The most ancient town of Bali-gur or Bálini-gur, close and opposite to Bhagal-par, was entirely destroyed by the Ganges, in the beginning of the thirteenth century, according to the Cshétra-samaisa, Its place is wholly filled up with sand and loose earth, many villages are now upon it. This spot at some future period will be scooped out again and so on alternately.

As the Ganges is a most favourite deity of the Hindus, they have in various shapes applicd to it the ineffable and mysterious number THREE, the type of the Hinde triad. It comes down from heaven in a threefold stream, which upon earth forms a Trivent, or three plated locks. This siream at Prayag mecting Yamuna and Saraswati, forms here a second Triveni, and the two last rivers near Hoogly, forsaking the Ganges, form a third Trivení. Besides these illustrious streams, the Ganges reccives many inferior ones divided into various classes. Seven belong to the first, one hundred to the second, and one thousand to the third. All these having joined the Ganges, to pay their respects to her, part from her as they approach the sea. Hence the Ganges is said to rush into the ocean through three, seven, one hundred and even one thousand mouths. This beautiful arrangement conveys but little geographical information.

Tue Ganges has also three Gangautris; one in the north, which is well Enown, the second is at Hardwár, and the third near Patteregotia.

Tre two last are certainly falls; but of that kind only called Rupits in America. The last was well known in the twelfth and thirieenth centuries, and a considerable town at the mouth of the Causici, with the surrounding district was from that circumstance called Gangautri.*.

There are several inferior rapids, in the Ganges, which are called by the natives Patácni, Patcui and Patcanyá. The last Gangautri beyins at Patter-gotta, and ends at Sancri-gali, and is certainly a dangerous rapid, where many accidents happen. It was formerly much dreaded, not only on account of the violence of the current, of the many rocks and sands in the bed of the river; but also, on account of the thievish, and cruel disposition of the natives on both sides.

Hence I am told, that poets sometimes called it the reach, stream or rapid of the blessed or departed, Nirvána-váhá, answering to the American phrase of Rapid des Noyés, or des Trepassés.

There were also three remarkable Charańudris, or Pádíntis, Chunáq̌. Mudgir and Pointy, each of which had a Gala, Gali, a pass or Gully. The last is called Sancri-gali, from the Sanscrit Sancirna-gali, or the intricate ${ }_{s}$ and narrow pass.

The two other Padántis, with their passes, or Gullics are Srigala, another name for Chunár, and the Sagala of Proleny: the other is Sac'halá, or Mudgir, and called Sigala by our ancient geographer.

[^85]YOL. XIV.

Ler us now pass to the lower parts of the Ganges, in its course towards the sea, through the Antarvédi, or Delta of the Ganges. Prolemy reckons five mouths, which luckily he describes with tolerable accuracy.

The first mouth is the Cambuson, now the Suvarna-rec'há, or Pipley river, which was considered, as the westernmost mouth of the Ganges, till the country was surveyed, under the inspection of Major Renneli.

The next or second mouth, which is that of the Bhágirat'm, is called in Sanscrit, Wriddhamantéwara-Samudra, literally the swelling. lord Oceanus alluding to the Bore, which makes its appearence in this branch of the river. It begins, at Fultá and reaches sometimes as far as Nadiya. Phulla-gram is the Sanscrit name of Fultá and is so called because Samudra swells with joy, at the sight of his beloved son Lunus, and his heart, like a flower, opens and expands, at the sight of him. Vriddhamanta implies increase, either in bulk, consequence or wealth, \&c.' In the spoken dialects it is called the Budamantes'wara, and simply the Manteśwari xiver. It is said in the Cshétra-samása to consist of three channels; one leads toward Hijill, and was called the old moorish, or western channel formerly; for the present western chamel, to the eastward of the former, is very different. The old moorish channel, I believe is no longer used. The second goes toward Gangáoságara, this is the eastern channel; and the third in the middle is called Ráagi-masána. These channels are formed by sand banks, denominated in some places braces, and in others reefs, and flats. The Ráariomasána is along that sand, corruptly called by seafaring people, the mizen-sand, Rági signifies lusting after, greedio
ness of prey. Masána is supposed to be derived, from the Sanscrit Masí, which signifies a change of form : but Masín in the spoken dialects, when speaking of the water of the Ganges implies a particular part of the channel, where the stream puts on a new form, and which looks like a gentle boiling of the water, with sand rising up and falling down. That part of the Channel is carefully avoided by boatmen, as it shews that there is a quicksand, which causes this appearance. I am assured that it is also called Ran-masán, nay some insist that this is the true reading. Rańa implies a tumultuous struggling, attended with a quick motion, and running and answers here to the English word race, as used by seafaring people.

This mouth is thus called on account of its size, and of the tremendous appearence of the Bore in it, Samudra, is Oceanus, Ságara, is Pontus, Narayeña, is Nereus, or Nereon, and Vamana, called also Naupati, or Naupaiin, or the lord of ships is Neptune, and perhaps the Nephtyn of the Egyptians. This is the Ostium magnum, the second mouth of the Ganges, according to Prolemy. The third mouth called by him Camberikhon, is that of the river Cambáraca, the true Sanscrit name of which, is Cumáraca, according to the Cshétra-samása. It is called, in the spoken dialects Cambádac, or Cabbádac, and by our early writers, Gundruc probably for Grumbruc; and also Gaudet, which is a mistake; for this is the Godupa, called in the spoken dialects God'ú and God'aváhi, and in the maps Gorroy, to the eastward of Bheshna.*

[^86]The Cumárací and Ichohamatí, are branches of the Bhairava, or Boyrub in the spoken dialects, and which proceeds from the sweat of Mahíádéva.

The fourth is called the false mouth by Proleny, probably because it is so broad, and extensive, that it was often mistaken for the easternmose branch of the Ganges, which lies concealed behind numerous islands. Its Sanscrit name according to Cávi-Rans's Commentary, is Trina-cach'has on account of its banks being covered with luxuriant grass, and of course abounding with Harina, deers and antelopes; for which reason it is also called Warińa-ghat $t^{\prime \prime}$, from their frequently making their appearence, at the landing places or Ghates.

Ptolemy's description of the Delia is by no means a bad one, if we reject the longitudes and latitudes, as I always do, and adhere solely to his narrative, which is plain enough. He begins with the western branch of the Ganges or Bhagiral'ht, and says, that it sends one branch to the right, or towards the west, and another towards the east, or to the left. This takes place at Tri-veñi, so called from three rivers parting, in three different directions, and it is a most sacred place. The branch, which goes lowards the right, is the famous Saraswati; and Proleny says, that it flows into the Cambusan mouth, or the mouth of the Jellasore river, called in Sanscrit Sactimati, synonimous with Cambue, or Cambuy or the river of shells. This communication does not exist, but it was believed to exist, till the country was surveyed. This branch sends another arm says our author, which affords a passage into the great mouth, or that of
the Bhágiraťht or Ganges. This supposed branch is the Rúpanaráyaña, which, if the Saraswati, ever flowed into the Cambuson mouth, must of course have sprung from it, and it was then natural to suppose that it did so. Mr. D'Anville has brought the Saraswatí into the Jellasore river in his maps, and supposed that the communication took place a little above a. village called Danton, and if we look into the Bengal Atlas, we shall perceive, that during the rains, at least, it is possible to go by water, from Hoogly, through the Saraswati, and many other rivers, to within a few miles of Danton, and the Jellasore river.

The river, which according to Ptolemy branches out towards the east, or to the left, and goes into the Cambarican mouth is the Jumná, called in' Bengal Jubuná. For the Ganges, the Jumná and the Saraswatí unite at the northern Triveni or Allahabad, and part afterwards at this Triveńi near Hoogly. It was known to the ancients; for it is called Tropina by Puinv; and by the Portuguese Trippini, and in the spoken dialects they say Terboni. Though the Jumná flows into the Camberican mouth, it does by no means form it; for it obviously, derives its name from the Cambádáácú, or Cambárac river, as Tobserved before. But let us proceed: Ptoleny says, that the Ganges sends an arm toward the east, or to the left, directly to the false mouth or Harinaghat fá . From this springs another branch to Antiboli, which of course is the D'háccá branch, called the Padmá or Puddá-gangá. There is a mistake, but of no great consequence, as the outlines remain the same. It is the Paddí or D'háccíb branch, which selids an arm into the Harinia-ghaftía. The branching vol. siv.
out is near Custee, and Comercolly and under various appellations, it goes into the Harina-ghatt a mouth.

It was my intention to have described the western boundary of Amia gangam in the same manner as I have described the others: but I find it impossible, at least for the present. A description of the country, on both sides of the said boundary would certainly prove very interesting; but the chief difficulty is, that the natives of these countries, insist that the Sellej formerly ran into the Caggar or Drishadvatí, and formed a large river called in Sanscrit Dhutpápá, and by Megasthenes Tutapus. This is also my opinion, but I am not sufficiently prepared at present to lay an account of it before the society. As the Caggar, or some river falling into it, is supposed by our ancient writers to have been also, the boundary of the excursions of the gold making ants toward the east, I shall give an account of them, as possibly I may not have hereafter an opportunity of resuming the subject: the legends are certainly puerile and absurd, but as they occupy a prominent place in the writings of the naturalists and geographers of classical antiquity, they may be regarded as worthy of our attention, and it may at least be considered as a not uninteresting enquiry, to endeavour to ascertain their source.

OUR ancient authors in the west, mention certain ants in India, which were possessed of much gold in desert places, amongst mountains; and which they watched constantly, with the utmost care. Some even asserted, that these ants, were of the size of a fox, or of a Hyrcanian dog, and Puiny gives then horns and wingso

These gold making ants are not absolutely unknown in India; bat the ant in the shape, and of the size of a Hyreanian dog, was known only on the borders of India, and in Persia. The gold making ants of the Hinduis are truly ants. and of that sort called Tlermites. To those, however birds are generally substituted in India: they are mentioned in the institutes of Menu* and there called Hemacáras, or gold makers. They are represented as of a vast size, living in the mountains to the $N$. W. of India; and whose dung mixing withe a sort of sand peculiar to that country, the mixture becomes gold, The learned here made the same observation to me, as they did to Ctesias formerly, that these birds, having no occasion for gold, did not care for it, and of course did not watch it; but that the people, whose business it was to search for gold, were always in imminent danger, from the wild and ferocious animals, which infested, the country. This was also the opinion of St. Jerone in one of his, epistles to Rusticus.

These birds are called Hemacárás, or gold makers; but Garidi a, os the eagle is styled Swarna-chura or he, who steals gold, in common with the tribes of magpies and crows, who will carry away gold, silver and any thing bright, and shining,

Garudis is often represented somewhat like a griffin with the head, and wings of an eagle, the body and legs of a man; but with the talons of the eagle. He is often painted upon the walls of houses, and generally

[^87]about the size of a man. This is really the griffin of the Hindus; but he is never even suspected of purloining the gold of the Hemacara birds.

The large ant of the size of a fox, or of a Hyrcanian dog, is the $\mathbb{Y} u$ z of the Persians, in Sanscrit Chittraca-Eyághra, or spotted tyger, in Hindé Chittú, which denomination has some affinity with Cheuntá or Chyonta a large ant. This has been, in my opinion, the cause of this ridiculous, and foolisk mistake of some of our ancient writers. The Yuz is thus described in the Ayin Acberi. $\left(^{2}\right.$ ) "This animal, who is remark${ }^{\text {s }}$ able for his provident, and circumspect conduct, is an inhabitant of the " wilds, and has three different places of resort. They feed in one place, "rest in another, and sport in another, which is their most frequent " resort. This is generally under the shade of a tree, the circuit of which "they keep very clean, and enclose it with their ding. Their dung in "the Hindovee language is called Ahhi:"

ABUL-TAZIL, it is true $A$ not say positively, that their dung, mixing with sand, becomes gold, and pı ibly he did not believe it. However, when he says, that this dung was called Akhir in Hindt, it implies, the transmutation of the mixture into gold. Ahkir is for C'Rir in the spoken dialects, from the Sanscrit Cshira; from this are derived the Arabic words Acsir, and El-acsir-Elixir, is water, milk also, and a liquid in general. To effect this transmutation of bodies, the Hindús have two powerful agents, one liquid called emphatically Cshir, or the water. The other is solid, and is called Mani or the jewel; and this is our philosopher's stone, generally called Sparsio-mani, the jewel of wealth; Hiranya-mani, the golden jewel.

There are really lumps of gold dust, consolidated together by some unknown substance, which was probably supposed to be the indurated dung of karge birds.

These are to be met with in the N. W. of India, where gold dust is to he found. They contain much gold, it is said, and are sold by the weight.

In Sanscrit these lumps are called Swarna-mácshicas, because they are supposed to be the work of certain Macshicas, or flies, called by us flying ants, because in the latter end of the rains, they spring up from the ground in the evening, flying about in vast numbers, so as to fill up every room, in which there are candles lighted, to the great annoyance of the people in them. These flies are one of the three orders of termites, apparently of a very different, though really of the same species. This third order consists of winged, and perfect insects, which alone are capable of propagation. These never work, nor fight, and of course if they can be said to make gold, it must be through the agency of their own offspring, the labourers, or working termites, which in countries abounding with gold dust are supposed to swallow some of this dust, and to void it, either along. with their excrements, or to throw it up again at the mouth. According, to the Greographical Comment on the Mahá-Bhárata, the Suvarráa-Macshica mountains, are on the banks of the Vitastí. There are also Macshicas producing silver, brass, 3 c. I never saw any, but Mr. Wilson informs me that they are only pyrites, and indeed, according to Puny, there were gold and silver and copper pyrites. Alchernists, who see gold every where, pretended formerly, that there was really gold and silver in them, though vol. xiv.
not easily extracted. If so it anst have been accidentally. These were called Pyrites auriferi, argentei, and Chalco-pyrites. The pyrites argentei are called, in a more modern language, Marcassitu-argentea.

These gold making birds, flies and spotted tygers, are by the Hindues conerien to the N. W, parts of India; and the Vuz, according to the yjui Acberi, begins to be seen about forty Cos beyond Agra. Elian is of that opinion also, when he says, that the gold making ants never went beyond the river Campylis and Ctesma, I believe with Megasthenes likewise, places them in that part of India. The Campylis,* now Cambali, is a considerable stream, four miles to the west of Ambálá, toward Sirhind: and it falls into the Drishadvati, now the Caggar, which is the common boundary of the east, and north-west divisions of India, according to a curious passage from the commentaries on the Védas, and kindly communicated to me by Mr. Colebrookr, our late President..

[^88]
## VIII.

## On the Sorex Glis

## By Messrs. DIARD and DUVAUCel, Communicated

 By Major Generial HardWICKE.To the Secretary of the Asiatick Society. Sir,

I HAVE the honor to lay before the Society a drawing and description of a small quadruped, native of Penang and other islands in the Indiar. seas: they are offered on the authority of the French naturalist M. $\mathrm{DIARD}_{3}$. and presented by the Honorable Sir Stamford Raffees, to be disposed. of at the pleasure of the Society.

I have seen this little animal, and the drawing I believe is pretty correct: a living one was brought to Bengal by a medical gentleman some months ago: it runs about the house, tame, but would not allow itself to be caught for close inspection: though at liberty to run out of doors, whenever it likes, it shows no disposition to leave it's quarters, and evinces some attachment to the family; for whenever strangers enter the house it shows a disquietude by a chattering like noise.

It occasions no trouble in feeding, for it is always on the search after insects, and its favorite food seems to be flies, crickets, grasshoppers and cockroaches.

It bears most resemblance I think to the Genus Viverra, particularly to V. Ichneumon: Mr. Diard, ascribes to it the habits of a squirrel, and from which I suppose he has placed it under the 4th order of the class Mammalia, but his description of the teeth by no means accords with the number which characterise the animals of this order: they have two cutting teeth in the upper jaw and two to four in the lower.

The result of future examination may remove this doubt; at present, it must rest on the authority offered.

I have the honor to be, Sir,

Your Obedient humble Servant, THOMAS HARDWICKE,

Major General.
Fort Whlifam, February 25th, 1820.

## Notice,-Sirr une nowelle espece de Sorex.-Sorex Glis (D. D.)

Lonsque les recherches d' histoire naturelle, n'avaient, pour ainsi dire, d'autre but que l'accumulation des especes et la distinction des formes exterieures; la decóuverte d'un petit animal qui n'eut eté remarquable, ni
par sa forme, ni par sa couleur, ni par ses habitudes, n'eut pas eté d'un bien grand interet pour les Naturalistes: mais aujourd'hui que la science vent surtout agiandir son domaine, d'obsorvations anatomiques, et assurer ainsi sa marche sur des caracteres invariables, ${ }^{\prime}$ Etre qui lui parait le plus precieux n'est plus celuì qui se distingue le plus des autres, par la richesse de sa parure, ou la singularité de ses proportions, mais bien celui qui peut lui fournir le plus de faits pour la confirmation ou la modification des loix organiques qu'elle a reconnu. Aujourd 'hui enfin que le scalpel scrutateur, a prouvé que la nature a souvent enfoui ses mysteres les plus admirables, sous les formes les plus viles et les plus communes, nous avons droit d'esperer. que les naturalistes verront avec joie leur catalogue s'augmenter de l' histoire du'ne nouvelle espece, qui n'a non seulement rien de desagré. able ou de repugnant, mais qui au contraire nous foumit pour la premiere fois, l' exemple d'un petit Animal, des plus gracieux, possedant tous les caracteres generiques, qui semblaient etre reservés exclusivement a quelques etres ou difformes, ou revoltants.

Pendant la durée de nos sejours a Pulo Penang et Sincapore, nous avons plusieurs fois tué dans les bois un petit quadrupede, que nous primes d'abord pour un Ecurueil; mais que nous reconnumes bientôe en l' examinant, appartenir a la famille des Insectivores: la forme alongée de son museau, avait pu seule nous faire soupçonner qu'il n'etait pas un rongeur: car ainsi que nous venons de le dire, par toutes les autres proportions de son corps, par sa taille, par ses oreilles rases, couvertes de poils tres courts, tout a fait formées comme celles de l'homme, et surtout par la dispositiou empenuée des poils de sa queue, il ressemblait parfaitement a une petite vol. xiv. 6 E
espece d' Ecureuil, qu’on rencontre a chaque pas dans les bois de Sincapore: du reste sa couleur n'a rien de remarquable; elle est en dessus d'un brun rouge melangé de fauve et de noir, et en dessous. un gris blanchatre uniforme; mais ce qui doit être noté, ce nous semble, c'est la teinte rosée de la peau de ce joli amimal, qui parait telle principalement autour des yeux et des levres.

Si le museatr allongé et les pieds pentadactyles de cet animal, devait faire aisement recomnaitre qu'il appartenait a la famille des Sorex, la singularité de sa forme pouvait aussi faire presumer naturellement quil m'appartenait a aucun des genres quelle renferme ; et c'est en effèt, ce qui a eté confirmé par le nombre el là disposition de ses dents.

La machoire superieure est arméc de 4 Incisives, a peu près cylindriqucs', peu longues, legerement usées en biseau, et tres ecartées: entr’elles et les molaires au nombre de 5 et herissées de pointes coniques, est une laniére isolée, a peu pres de la meme longeur. A la machoire inferieure on compte au contraire 6 Incisives serrées, couchées en avant, dont les quatre intermediaires sont très longues. La canine est aussi plus allongée que celle de'n haut, elle a derriere elle une petite fausse molaire, puis une rangée de 4 molaires tricuspides.

A ces particularités daus la forme, et dans la dentition de notre animal, si l'on ajoute la presence d'un petit cæcum a l' origine des Intestins, cæcum qu' aucun des Sorex n'a encor présenté, on aura certainement tout le droit possible de le prendre pour type d'une nouvelle sous-division: nous
lui assignerons le nom de (Sorex Glis) qui donne a la fois, l' idée de sa forme extérieure et de sa veritable nature ${ }_{\text {. }}$.

Enfin pour terminer lhistoire de ce-veritable Sorex, deguisé sons des habits d'Ecureuil, il a de grands yeux, 4 mamelles ventrales, une langue longue, un estomach simple, et un tube intestinal replié 7 fois sur lui meme, et súivi comme nous l'avons, deja dit, d'un petit cœcum.

Ce petit animal se nourit d'insectes et principalement de larves qu'il cherche sur le tronc des vieux arbres, et meme aterre sous les debris des feuilles: nous l'avons trouvé rarement, et toujours dans des lieux ecartés: il parait cependant quill n'est pas d'une nature trés sauvage, car lors que nous etions a Penang, une personne de cet endroit en possedait un weés apprivoisi, quil nourissait dans une cage comme un Ecurenii.

DIARD ETE DUVAUCEL

## 1X.

On an Indian method of constructing Arches.

## By Captan Mackintosir.

To the Secretury of the Asiatick Societyo

Nagpore, 20th No vember, 1820.
Sir,
曋AVING lately witnessed at Nagpore, the construction of a semicircular arch, which was erected by native workmen without any centering, or other usual temporary supports in a way I believe peculiar to this part of India, I venture to communicate to you the primciples upon which this work was conducted, in the hope, that even professional men in Europe, may thereby derive advantage; it being generally understood, that the centering for an arch, is attended with considerable expence.

The arch was semicircular +22 feet in span; the piers were built in the usual manner and very substantially.


Arch viewed from above



So Re Vinl xav

At the spring of the arch, stones of a considerable length were used, having the inner ends cut, so as to suit the curvaFig. I. ture of the arch. Six such layers were laid on each side, in $A A$ the manner stoties are placed, in what is generally termed the Egyptian arch. The upper layer having a groove, five inches wide, and two in depth.
$\boldsymbol{B} \boldsymbol{B} B \boldsymbol{B} \quad$ On a arriving at this height, stones of a smaller size were made use of, each having a groove cut in two adjoining faces, two inches in depth by four in breadth, with corresponding projections on the opposite sides ${ }_{\alpha}$

These stones were so placed, that when a layer was comC C C C pleted, there appeared a channel or groove the whole length of the building ready to receive and bind to it by their projections, the next row, of stones when applied. The stones were of a fine sort of free stone casily cut. Common cement was used.

Erghr layers of the stones last described, having been placed on both sides, each layer occupying about six inches of the curvature of the arch, it becomes necessary to prevent the work, if carried on, from falling inwards. A space of ten feet in length, on each side of the unfinished arch was marked
Fig. $1 \& 2$ off, and at these points two strong horizontal beans, were vol. xiv. 6 F

D D forced into the grooves, extending across the chasm. From these as from a new base, the grooved stones already described Fig. 2F $F$ were used. The length of each succeeding layer contracting Fig. $3 \mathbb{H}$ gradually, until the application of the key stones.

When the arch is of considerable span, a series of bases such as now described, is placed, each base higher than the Tig. 2 other, in order to support the work until it is secured by being IH keyed.

Fig. 2* WHEN the center portion of the arch has been thus comFI pleted, the beams are removed, by being sawed asunder in two places.

In a similar manner the arch was continued in different FG portions at either end of that part first finished. The introducH tion of a new beam constituting with it, a renewed base. A slight scaffolding supported the workmen.

In this simple, though ingenious manner, was an arch across a space of twenty-two feet, erected, without any frame for its support, while buiding.

THe principle seems applicable either in masory or cast iron, to an arch of any dimensions.

Having witnessed with great curiosity the operation I have endeavoured to describe, I deem its communication may prove of utility, in the construction of bridges, domes, and other arches, or vaulted buildings.

I have the honor to be Sir, Your very Obedient humble Survant, B. MACKINTOSH, Captaia MEadras Artillery.

## X.

An account of the Inscriptions on the Cootub Minar, and on the Ruins in it's Vicinity.

## By Walter EWER, Esq.

THE Society is already in possession of a description of this extraordinary building, drawn up by Captain Blunt, of the Engineers: but as that officer was unable to procure copies of the inscriptions, and limited his communication to a general account of the Minar only, the enclosures may probably be acceptable。

The plan was made from actual measurement, and has, I believe, no important fault as far as it goes. The inscription No. 1, is copied from a stone over the entrance door; No. 2, from a slab over the door in the first balcony; No. 3, from the fourth door; and No. 4, from the white marble portion of the fourth story, the letters being in relief on a band which encircles the pillar. The inscription over the door in the second balcony was not deciphered, and there is none over the third.

I have some reason to believe that, with the exception of the first, these have never been read, since the ruinous state of the galleries ren-


Unfinished Minar


dered it dangerous to venture on them: nor could I find that any person in Dehli was in possession of a copy: With the assistance of a telescope of great magnifying power I was enabled to copy them with the purmost facility, and to ascertain the general meaning of the contents of each, although some words remain undeciphered on account of the imperfect state of the letterso.

No. I, reeords thie repair of the Minar by Secander son of Bahlol in the year 909 Hijri, A. D. 1503, and No. 3, is to the same effect with the addition that the damage was caused by lightning. Nos. 2 and 4 are much the same is purport, the latter a perfect fac-simile; and both state the Minam to have been built in the time of Sultan Shems-ud-din Altemsh. This is again repeated in the first inseription in red stone whieh encircles the building above the lower gallery.

The abovementioned Sultan reigned from A: D. 1210 to 1231; corresponding with A.H. 607 and 629, and may be looked upon as the prince under whose-auspices the Miniar was compleated, and some progress made in the neighbouring mosque, on the subject of which I shall now offer a. few remarks.

The line of arches runs directly north and south, and consisis at present of six compleat arches, and as many of which the pieces only remain: the total length is about 350 feet and the height of the center arch 53. There are fragments of inscriptions round the eastern front of each arch, by which it appears; that the southern portion of thie intended mosque vol. xiv.
was compleated in the Hijri year 617, and the centre arch in 594, corresponding with A. D. 1220 and 1197 ; the latter inscription also calls the building $\mathrm{p}^{1} \mathbf{j}^{\prime \prime} \mathbf{s}^{\prime \prime}$; the date of the northern portion could not be deciphered.

Immediately opposite to the centre arch is the iron pillar, about 25 feet high: and to the eastward extends a court enclosed by a high wall, and surrounded on two sides by arcades formed of pillars carved in the richest style of Hindu architecture. . The domes are particularly elegant, and were evidently formed before a knowledge of the principles of the arch had reached this country: arcades of the same description but with little ornament extend to the south and east of the Minar: Over the eastern gate of the court is the inscription No. 5 , and over the northern; (now blocked up), No. 6. I am of opinion that the former is modern for the Cootub-ud-din mentioned therein, having none of the royal titles, cannot be the viceroy, afterwards Sultan of that name; and as to the saint we have nothing but traditional proof of his existence: neither am I certain of the correctness of No. 6 , the hundred being very indistinctly marked: in this will be found the name of Mohammed ebn Sham (Ghori) : besides, the wall of the court to which it was an entrance, is certainly posterior to the centre arch which it encloses, and as that was compleated in 594 , the gate cannot have existed two years before.

The large unfinished Minar is an immense mass of rough masonry nearly double the circumference of the Cootub, and offering no means of
ascertaining its antiquity. To the west of the northern entrance of the arches is a tomb called that of Suens-ud-din Altemsi but I was unable to decipher any of its inscriptions.

I shall now offer the wesults which appear to me deducible from an attentive examination of these ruins. 1st. That the line of arches is the east front of an intended mosque, which was commenced under the reign of Mohammed Ghori, by his viceroy Coorub, and carried on by Altemsh, but never compleated. 2d. That the Cootub Minar is of equal antiquity, but that, it never was intended to form any part of the mosque, and was erected within the precincts of the temple as a monument of the supremacy of the Musselman faith, over the religion of the conquered Hindus. 3d. That the unfinished Mindr is equally independant of the intended mosque.

The regularity of the range of arches, and the similarity in size and generally in ornament, of corresponding portions, at once shew that they belong to one building, and that this was intended to be a mosque is obvious, not only from the circumstance of its being called so in the inscription on the centre arch, but also from the facts of it's being exactly in the meridian, and of the arches being profusely covered with extracts from the Koran: it was intended for the east front of the mosque, because that side is richly adorned with carving, and the western on the contrary quite plain, and also because in this country', the western wall of every mosque, being that which faces Mecca, is invariaby closed, such is the case with the Adina mosque near Maldu, which was built by Aur (Secander Sani)
in the IIijri year 707, A. D. 1307; and the same with every, other I have seen. It is also plain that it was never finished, for the plan will shew that a portion of the old Hindu arcade passes through the line of arches, and into what would have been the interior of the mosque. Some of the Hindu pillars ase even built into the western side of the centre pierso.

The plan will shew, that the Cootub Minar is distant about 160 feet from the centre of the southernmost large arch, to which it is directly opposite. This position alone is quite sufficient to prove that it never was intended to be a part of the mosque, for Minars, are almost always placed at. some angle, and are in general joined to the mosque, and if we choose to suppose that the range of arches is the western instead of the eastern fourth, and that it was intended the latter should be a tangent to the Minar, that building will compleatly block up one of the principal entrances in this mamner, instead of being as usual at the entrance
 front. I do not recollect a single instance of a Minar attached to a mosque, being inscribed with dates as this is, more particularly called celas, as if it was an independent building. It is also worthy of remark, that in general the stairs of Minars commence from the roof of the mosque, and not from the ground, as those of the Cootub.

I believe it was by no, means uncommon for the first Mohammedar emperors to erect Minars of more than ordinary magnitude on the sites of Hindu temples. There is part of one at Coel, about 20 feet in diameter and 35 high : it has evidently always been an independent building, and as
apears by the inscription was built in the reign of Nasir-ud-din, A. II. 652, A. D. 1254. Although we cannot now find any Hindur ruins in the vicinity of this town, yet the existence of a temple in former times is clearly proved by pillars oovered with Hindu carving, being used as beams, to support the stairs of the Minar similar to the Cootub, also the door is to the north; the steps reach the ground, and it is denominated, building ( $\because$ رار

The Hindus are said to claim the Cootub as the work of out of their princes, new-faced and ornamented by the Musselmons. I think there are some circumstances which create strong doubt of the accuracy of the tradition. lst. The three lower stories of the Minar are externally gener. ally built of the red stone, from the quarries of Futtehpur Sicri, and a considerable portion of the interior is constructed of the same material, which is not to be met with throughout the extensive Hindu ruins, which surround the tower on every side, and which are comparatively of great antiquity. 2 d . The entrance passage and staircase of the Cootub are both arched, thus exhibiting a knowledge of architecture in the builder, which the Hindus of that age did not possess. The small domes which remain enire among the Hindr ruins, are all built of stone, each a segmient of a circle and each decreasing in area, and projecting over that beneath it, until the dome is compleat, also the roofs of the arcades, are invariably formed of blocks of stone, extending from one pillar to the next,

The unfinished Minar bears north from the Cootub distant about 426 feet: it is therefore considerably beyond the northern extreme of the line of rol. xiv.
arches, and could not consequently have been intended to form part of the mosque. Even had the architect proposed to extend the front beyond the unfinished Minar, the same circumstance which prevents the Cootub being considered a part of the mosque, (its distance from the front) applies with equal force to the large tower. It could never have been intended to match the Cootub, for it's circumference is nearly double. It is not built in the same style, being surrounded by a sort of projecting basement, on which the door (facing the east) is raised. There are no steps in the inside, the masonry is extremely rough, and the walls and centre pilhar about 40 feet high. From the appearance of the mortar in many places, it seems to me that this building was formerly cased with smooth stonie, but why this was removed, or for what purpose, and by whom the tower itself was commenced, and afterwards left unfinished, I cannot pretend to say.

The present state of the Cootuh Minar is calculated to excite apprehensions of its speedy destruction. On the west side many stones have been forced out with a degree of violence sufficient to cause a vertical crack in the stairease and centre pillar. On the east a Banyan tree has taken frm root, and if no one takes the trouble to remove it, there can be no doubt that it will ensure the fall of the tower, before many years have clapsed. This is to be regnetted, for the Cootub Minar is a work unri-. valled of it's kind in this country, and in some respects in the world, when we consider its great size, the materials of which it is built, the richness and profusion of its ornaments, but above all the solidity of its construction, which, for all we know to the contrary, has emabled it to resist the effects
of time, storms and earthquake, during more than 300 years, without being ever repaired.

I would recommend that copies be made of all the inscriptions which surround the Cootub; for I suspect that they detail the circumstances which led to the building of it, instead of being extracts from the Koran, as is generally imagined.

Copies and Translations of the Inscriptions.*'
No. I.
 U
位
 ا .
رب!

[^89]The Prophet on whom be the mercy and peace of God，has declared ＂whoever erects a temple to the true God on earth，shall receive six suct ＂dwellings in Paradise．＂The Minar，the building of the king of kings Shems－ud－duny $i$－wa－ud－din，now in peace and pardon，be his tomb pro－ tected，and his place be assigned in heaven－was injured by lightning in the reign of the exalted monarch Secander the son of Behlol：（may his power and empire last for ever and his reign be glorious）and therefore the slave Fatter－Khan，the son of Mesned－Áei the liberal of the liberal，and the meritorious servant of the king ——＿＿，sepaired it according to command．The 13 th of Rebi－ul－Akher in the year 903. No．II．
 （0），
The Sultan Shens－ul－hak－wa－ud－din：Altamsh ——＿一＿erected this building．

No．IIT．

$$
\begin{aligned}
& \text { 度 } \\
& \text { بركزي ós' } \\
& \text {, ノ1, }
\end{aligned}
$$

In the year 907，this Minar having been injured by lightning，by the aid of and favor of God，Finozmend Yamáni restored whatever was need－ ed by the building：may the Supreme Lord preserve this lofty edifice from future mischance．

No. IV.
 Co准

The erection of this building was commanded in the glorious time of the great Sultun, the mighty king of kings, the master of mankind, the hord of the monarchs of Turkestan, Arabia and Persia: the sun of the world and religion, of the faith and the faithful, the lord of safety and protection, the heir of the king dom of Suliman Abul Muzeffer Altamif, Nasir Amín-ul-momenín.

> No. V.
和

Kuttebeud-din-Ibek, on whom be the mercy of God, constructed this mosque.

No. VI.



?

In the name of the most merciful GoD. The Lord has invited to Paradise and brings into the way of righteousness him who wills it. In the year 592 , this building was commenced by the high command of Moez-ud-dunya-wa-ud-din, Mohamied Beni Sim, Nasir Amir al Momenin.

## END OF THE FOUR'TEENTH YOLUME.

## Printed by P. Pereira, at the

Hindoostanee Press, Calcutta.

## APPRNDIX

## I.

## ML $\mathbb{H}_{a} \mathbb{M} \mathbb{B} \mathbb{H}^{(1)} \mathbb{S}$ <br> of tile <br> ASIATICK SOCIETY, 1822.

## PATRONS.

The Most Noble Francis, Marquis of HaStings, K. G.
Governor General, \&c. \&c. \&c.
Honorable J. STUART, Esq.
Honorable J. ADAM, Esq. $\}$ Members of the Supreme Council. Honorable J. Fendal, Esq.


PResident, The Most Noble MARQUIS of HASTINGS, \&c.\&c.\&c. 1st. Vice president, The Right Rev. T. F. middleton, D. D.
F. R. S. Lord Bishop of Calculta.

2nd. Ditto, Sir E. HYDE EAST, Knight.
3rd. Ditto, Mayor General T. HardWicke, F. R. \& L. S.
4th. Ditto, W. B. BAYLEY, Esq.

## COMMITTEE OF PAPERS.

Including the President, the Vice presidents, and SECRETARy.

James atkinson, Esq. J. BENTLEY, Esq. Reverend Dr. W. Carley. J. G. GORDON, Esq. Captain a. Lockett. vol. xiv.

SECRETARY, H. H. WILSON, Esq.
SUPERINTENDANT of the MUSEUM, Docton J. ADAM. Treasurers, Messrs. PaLMer and CO.
AGENT in Europe, H. T. COLEBROOKE, EsQ.
BOOK-SELLER in Europe, J. MURRAY, Albemarle Sireet. COLLECTOR, RAM COMUL SEN.

$$
M E M B E R S
$$

Dr. J. Adam.
M. Ainslie, Esq.

David Anderson.
Major James Anderson.
J. Atkinson.

Lieut. Col. John Baillie.
P. C. Baird.

Francis Balfour, M. D.
Hon. Sir G. H. Barlow, Bt. \& K. B.
W. B. Bayley.

Joseph Barretto, Junior.
John Bebl,
Rev. J. Bell.
J. Bentley.

Andrew Berry, M. D.
Robert Biddulph. W. Bird.

Richard Blechynden.
Admiral Bligh, F. R. S.
William Boag.
R. H. Boddam.
C. K. Bruce.

Thomas Brooke.
E. Brightman.

Major Jeremiah Bryant.
Rev. Thomas Bryce, D. D.
Francis Buchanan, (Hamilton)M.D.
Sir Antony Buller.
Sir William Burroughs, Bart.
J. Calder.

Major Benjamin Camac.
Herbert Compton.
Major John Canning.
Sir Codrington E. Carrington, Kt.
C. Chapman.

Honorable John Cochrane.
Rev. W. Carey, D. D.
Sir J. E. Colebrooke, Bart. Major' W. Colebrooke. Capt. Sir R. Coloquhoun.
H. T. Colebrooke.

Alexander Colvin.
J. Crawford.

Thomas Daniel.
J. Da Cruz.

George Dowdeswell.
Lieut. Col. C. J. Doyle。

Wm. Eaton.
Sir E. Hyde East, Kt.
N. B. Edmonstone.

William Erskine.
W. Ewer.

Robert Farquhar.
John Farquhar.
Captain E. Fell.
J. H. Ferguson.

John Fleming, M. D.

John Fullarton, M. D.
John Fombelle,
Francis Fowke.
Gordon Forbes.
J. B. Fraser.

Captain J. Fraser.

John Borthwick Gilchrist, L.L.D.
J. Goldingham.
R. T. Goodwin.

Eran.Dempster Gordon.
G. J. Gordon.
W. L. Gibbons.

Thomas Graham.
Charles Grant.
William L. Grant.

Lt. Col. R. Haldane.
Lt. Col. Henry Haldane.
Alexander Hamilton.
Lt. Col. William Hamilton.
Maj. Gen. Thos. Hardwicke,F.R.
Captain B. Hall. [\& L. S.
Major J. S. Harriott.
J. H. Harington. James Hare, M. D.

Rev. J. Hawtayne.
Captain J. A. Hodgson.
William Hickey.
Henry Hodgson.
R. Home.

Hugh Hope.
James Howison.
H. Hough.
W. Jack.

Henry George Keene.
Alex. Hamilton Kelso.
Sir John Kennaway, Bart.
Richard Kennaway.
Colonel C. H. Keating.
Lt. Gen. Alex. Kyd.
James Kyd.

Lt. Col. Wm. Lambton.
William Leycester.
Captain R. Lachlan, 17 Foot. Rev. J. L. Loring, D. D.

Wm. Linton.
Charles Lloyd.
Lt. Col. Herbert Lloyd.
M. Lumsden, N. K. D. Capt. Abraham Hockett.

Col. Colin Macaulay. Col. Alex. Macdonald. G. Mackillop.

Holt Mackenzie.
Capt. W. Gordon Mackenzie.
Sir Francis Macnaghten, Kt.
Sir John Macpherson, Bart.
Major Gen. Sir J. Malcolm, K. C. B. Sir Chas. Ware Mallet, Bart.

William Marsden.
Rev. Joshua Marshman.
J. C. Marshman.

William Byam Martin.
E. S. Montague.
W. H. Macnaghten.
T. C. Metcalf.

Rev. W. Mill.
C. A. Molony.

Grœme Mercer.
Nathaniel Middleton.
The RightRev. T.F.Middleton, D. D.
F.R.S. Lord Bishop of Calcutta. $\}$

Major Edward Moore, F. R. S.

William Moorcroft.

- Gr. Money.

Captain M. Morrison.
Lt. Col. Jas. Mouat.
John McWhirter, M. D.

Simon Nicolson.
The Hon. Fred. North.

Walter Ogilvy.
William Oliver.
Sir Gore Ouseley, Rart.

John Palmer.
Col. William Patterson.
Rev. J. Parson.
Gcorge Parry.
H. T. Prinsep.

Captain W. Price.

Hon. Sir T. S. Raffles.
Henry Ramus.
James Rawlins.
Charles Minner Ricketts:
Lt. Col. Thos. Robertson.
George A. Robinson.

- Major J. Roughseadge.

John Romer.
James Ross.
Sir Henry Russell, Bart.
Alexander Russell. J. Rutherford.

Robert Saunders.
David Scott, Junior.
Helenus Scott.
Lt. Col. Richard Scott:
Thomas Scott.
Honorable F. Semple.
G. J. Siddons.

John Waiter Sherer.
$\ddot{\mathbf{R}}$. P. Smith.
John Shoolbred, M. D.
H. Sotheby.

Col. Mathew Stewart.
Sir Thomas Strange, Kt.
Honble C. F. Stuart.
Honble. James Stuart.
Captain J. W. Stewart.
H. J. C. Sutherland.

Courteney Smith.
G. Swinton.

## Appendix:

B. Sydenham.
Li. Col. T. W. Taylor: Major John W. Taylor. Captain R. Taylor, Doctor. J. Taylor.
Rt. Mon. Lord Teignmouth.
Rev. William Tenant.
W-H. Trant.
Montague Hen. Turnbull.
John 'Thompson,
George Thompson.
Captain James Tod.
Henry Trail.
Robert Tytler, M, D,
Captain Charles Tyler.
Henry St. Geo. Tucker.

Archibald Trotter.
John Trotter.
N. Wallich. M. D.

Captain W. Walker.
Captain John Warren.
Captain W. S. Webb.
Captain F. S. White.
Lt. Col. Francis Wilford. Charles Wilkins.
John Lloyd Williams. P. M. Wynch. H. H. Wilson.
T. Yeld.

James Young.
Rev, J. Young, L. L. D.

## HONORARYMEMBERS.

M. Carpentier DeCossigny.

Baron Denon.
Baron DeSacy:
Baron Debassayn de Richmont. Licut. Col. Fitzclarence, Joseph Von Hammer,

Monsr, Chezy.
Rev. Dr: John.
M. Langles.

Rev. Thomas Maurice,
Sir William Ouseley.
Earl of Mountnorris,

## Appendix.

## II.

> List of the Donors and Donations to the Libraky of the Asiatick Society, (from January, 1820).

| American Philosophical Society.... | Transactions of the American Phio losophical Society new series, Vol. 1st. <br> Historical Transactions of the American Society, Vol. 1st, <br> Heckiwelder's Narrative of the $M o$ 。 savian Mission to the Indians, from 1740 to 1708 。 |
| :---: | :---: |
| American Academy................. | Memoirs of the Amearican Academy, Vol, 4, Part 1st. |
| Society of Arts and Science, \&c. ... | Transactions of the Society, Vols. 36 , 37 and 38 , Supplement to do. |
| Mons. Bodel | Petite Promenade Physique. |
| Captain Bypwell. . ................ | Vita Christi in Persian and Latik, by Jerone Xavier. |
| Captain Bryce. .................... | A Cingalese Manuscript. |
| Calculta School Book Society...... | Dig Dersan, Bengalee and Englisti. Geography in Bengalce.' The 2nd. Report. |

C. B. Crommelin, Esq. ........... Mornieson's Chinese Dictionary. Ditto's Grammar. Ditto's View of China. Original Works in the Chinese Language, viz.

1. San-tsai too hooi. The Universe delineated, containing a view of the heavenly bodies-the earthdistinguished persons-the four seasons-various buildings in Chi--na-the various arts-the various parts of the human body-the various articles of dress-customs and cercmonies-precions stones -ancient inscriptions-birds and beasts-trees and plants: in 116 Vols. the whole illustrated with wood cuts: nearly 200 years old. A scarce work even in China.
2. Poh koo too. A collection of - Chinese cuts exhibiting ancient vases and vessels of various kinds, 26 Vols.
3. Koo yoh too. A collection of Chinese cuts exhibiting a great variety of ancient carved stones8 Vols.

## Appendis:

4. Lee shiee. A collection of anci-- ent inscriptions, and figures in stone-9 Vols.
5. San hai king. A collection of imaginary animals supposed to inhabit the mountains and seas-4. Vols.
6. Sou chin Kee. An exhibition of Gods, deified heroes, and Saints3 Vols.
7. IIwa phoos A work on the art of Drawing- 5 Vols.
8. Hwa chuon. Drawings of various beasts, birds; plants, \&c.- 5 Vols.
9. Shoh chw chai. On the art of writing, and sketching flowers, \&c. -12 Volso $_{0}$
10. Puh-my-too. A hundred Drawings of beautiful Women-4 Vols.
11. Lee nyeu chuon. Memoirs of illustrious Chinese Women.
12. Woo-shwang poo. A Treatise on Drawing-1 Vol.
13. Un ya too. Plates of various kinds intended to illustrate the ancient Classics..
Captain Fell. Rám Gitá and Rảm Cavacka.
W. L. Gibeons, Esq. Synopsis of the Catalogue of theBritish Maseum.
Steuart's Antiquities of Athens, Vol. Ist.
Major General Mardwiche: ....... A Book of Drawings, from the Cavesof Dumror near Neemuch, byLieut. Bell and Ens. Roebuck.Report of the Agricultural Societyof Sumatra.Description of Select Malay Plants,by Dr. JАск,
Br. F. Hamiletor. On the Genealogies of the HinduDeities, Princes and Heroes.
Josefin Ton Hammer. Mines of the East, Vol. 6. 3rd Part.Umblick auf einer reise von Con-stantinopel nach Brussa und demOlympos, \&c.Morgenlandische Kleeblatt.Inhrbycher der Literatur, the firstsix numbers.
Trofessor Menfer, New Testament in Tubrkish.
Mons. Julliea. IRevue Encyclopedique, Vol. 4. Nos.10 and 11.
Rons. Jomard. Notice sur les signes numeriques desanciens Egyptiens.
Mons. Langles. Monuments de l'Indoustan, to the24th Number.
Revue Encyclopedique, 3 Vols. fromJanuary to September, 1819.Voyages de Sindbad, in Aralic and French.
Recherches sur la decouverte de I' éssence de Rose.
Captain A. Lociett. Mr. Rich's 2nd, Memoir on Babylon.
L. B. Montague, Esq. A Manuscript Grammar, Tamul andLatin。Arsacidarum Imperium, by Vail-lant.
Rev. S. Pickering. ................. On the Orthography of the N. Ame- rican Languages.
Sir Stamfort Raffles. Malayan Miscellanies, Vol. 1st.Sir Sydney Smith.Dictionaire Chinois et Latin par DeGuignes; Paris.
Baron De Sacy. Pendnameh of Sheikh Ferid-Uddin-Attar, with a translation.
A. W. Schlegel. Indische Bibliothek, 2 first Vols.
Dr. Tytler Systema Nosologica.Colonel Wilford.Commentaries of Padre Montserrat.autograph, 2 Vols.

## Appendix.

## III.

List of the Donors and Donations to the Museune of the Asiatick: Society, (fiom January, 1820).


W. B. Bayley, Esq. ................ Ancient Greek Vases, discoveredin: an excavation, at Athens.
G. Burney, Esq. .................... Skull of an Alligator, and Skull of a large Elephant.
Captain BidwEEL. ................... Several silver and copper Coins, and one gold; Greek and Roman.
Porcelain and metallic Images of Egyptian Divinities.
Captain Boileav, ................... The Horns of a species of a Deer.

## Appendix.

| Captain Bruce, Bombay Marine. | Silver and copper Coins, of the $A$ sacides, and Roman Emperors, found in Turkish Arabia. |
| :---: | :---: |
| Sir Robert Coloquhoun, Bt. ..a.a. | A Nepalese Sword. |
| W. L. Gibbons, Esq. | Two Weapons, used by the inhabi-- tants of the Garrow Hills. |
|  | Coins of the Rajáa of Tipera, and Minerals, from Nepal. |
| J. J. Gibson, Esq. .....0.0. | Specimen of Human Monster, from Oude. |
| J. Kyd, Esq. ....................... | Kandyan and Siamese Coins. |
| Captain R. Lachlan. .....o......or | IIindu Statues, and specimens of Petrified Wood. |
|  | Two Barometer Tubes, made by a Native at Gazipore. |
|  | Grological specimens and Minerals, from Behar, and the banks of the |
|  | - Ganges. |
| B. LACY, Esq $00.0 \ldots \ldots 0.0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot 0 \cdot$ | Specimens of Lava, from Mount Vesuvius and Pompeii. |
|  | A brass Ring, dug out of Herculaneum. |
| Captain Lumsden..................... | A large Tooth of the Nerwal' or Sea |
|  | Unicorn, from the Arctic Seas. |

## Appendrx.

| S. Col. Mchentie. . . . . . . . . . . | Several specimens of Minerals,Images of Hindu Deities, Kreeses and other articles, from Java. |
| :---: | :---: |
| Lieut. Col. OMalloran, C. B...- | Silver pieces bearing impressions of Hindu Deities. |
| Lieutenant Ouseley. | Skin of a large Snake, with its Head. |
| Captain Peach. | Skull of Ethiopian Hog, with its Tusks, from Caffraria. |
| Capain Presgrave. ............... | Copper Head of a Spear, found at Betoor. |
| Lieutenant Ralfe. | An ancient Chinese Coin. |
| Dr. W. Russ | Specimens of gold, silver and copt per Ores, from South America. |
| Lieutenant Swayme...........er ${ }^{3}$ | Specimens of Minerals, from BundelRhund. |
| Rev. Mr. Thom, Cape of Good Hope. | Specimens of Minerals, from Cape of Good Hope. |
| Miss Tytler. | A great variety of beautiful and interesting models of Implements: and Machines, used by the Natives of Hindustan, viz. <br> 1. A Hindustani Plough, called Hal, - scale $1 \frac{1}{2}$ inch to a foot. |
|  | 2. A Hindustani Spade, called Plaura, scale $1 \frac{1}{2}$ inch to a foot. |

3. Khúrpá, an instrument for dig. ging and clearing lands of weeds, scale $1 \frac{1}{2}$ inch to a foot.
4. Hindustani Drill Plough, scale $1 \frac{1}{2}$ inch to a foot.
5. Two Hansuas or Sickles, 3 inches to a foot.
6. Henga, an instrument for pressing the seeds into the ground, and breaking clods like the English roller, scale $\frac{3}{4}$ of an inch to a foot.
\%. A Mill for grinding corn: it is called by the Natives Janta-Cha$k h i$, scale 4 inches to a foot.
7. Another, ditio.
8. A Dhunkí or Chalni, used for separating grain from the husk, scale of $3 \frac{r}{4}$ of an inch to a foot.
9. Another, ditto, ditto.
10. Srip, used for winnowing com, scale of 4 inches to a foot.
11. A model shewing the manner in which the oxen tread out the corn, scale 1 inch to a foot.
13 A Kolhu, Hindustani Oil Mill, scale $1 \frac{1}{2}$ inch to a foot.
12. Cherkht, used for separating the seeds from the cotton wool, scale of 3 inches to a foot.
13. Cherkht, also used by the Nad tives for separating the seeds from the cotton wool, scale of 3 inches to a foot.
14. A Cherlha, spinning wheel of India, scale of 4 inches to a foot. 17. Dhúnki, an instrument in two pieces for beating cotton, after the seeds have been separated, scale 3 inches to a foot. :
15. Úkhli Másel, or Pestle and Mortar, for separating grain from husk, scale 3 inches to a foot.
16. Kamán, a Bow with which the spinner beats cotton, scale of $\mathfrak{B}$ inches to a foot.
17. Dheuki, used for separating grain from the husk.
18. A Hindustani apparatus for making butter, scale 2 inches to a foot.
19. Weaver's Loom, with a weaver holding a shuttle in his hand.

25．Model of an instrument，shewing the first stage of preparation for the Loom，scale of 2 inches to a foot．

24．A model shewing the second stage of preparation for the Loom， scale of 2 inches to a foot．

25．Reel on which the skeins of thread are put，scale of 4 inches to a foot．
26．Pareta or Reel of India，scalc of 4 inches to a foot．
27．Model of a Loom，for weaving bobbin and tape．

28．Model of a Loom，for weaving Hindustaníwoollen carpets，scale of 2 inches to a foot．
29．Model of a Loom，for weaving Hindustani cotton earpets，call－ ed Satrinji，scale of 2 inches to a foot．

30．Another，ditio．
31．Do．for wearing Izarbend ارار：
32．Model of machine for preparing IIndustami Cheeks．
33．Ditto，ditto for preparing Jhalar．

## Appendix.

34. Dáera, instrument for spinning hemp, scale of 6 inches to a foot. 35. A bundle of hemp cords.
35. Specimen of Sirki grass, with which the spinners roll the cotton into small quantities for spinning. 37. A machine for preparing single thread from the leaves of Sirlit grass.
36. Múli, a machine for raising water from the wells, scale 2-5 of an inch to a foot.
37. Mút, used in Hindustan for raising water, 2-5 of an inch to a foot.
38. Koring or Persian wheel, a macline for watering land from a tank or ditch, 3-4 of an inch to a foot.
39. A machine for raising water.
40. A bamboo basket, with which the people of India water the rice fields, scale of 4 inches to a foot.
41. Lac-bracelets, worn by women in India.

## Appendix.

44. An apparatus for drawing out silver thread, scale of 3 inches to a foot.
45. Another, ditto ditto for preparing golden thread.
46. Part of the floor of a house, where golden threads are prepared.
47. Model of a Saw, used by the Natives of Hindustan.
48. A Chák or potter's wheel, scale 2 inches to a foot.
49. Model of a Potter"s instrument, for preparing: earthen pots.
50. Model of the Still for distilling spirits made of the original materials, scale $1 \frac{1}{2}$ inches to a foot.
51. Model of a Still for distilling rose water ${ }_{9}$, made of the original materials.
52. Model of a Hindustant fishing canoe.

Dr. R. Tytler<br>Specimen of Beerle, from Oute.<br>Brass casts of Hindw Deities, and Fossils, called Salgrams.<br>Several ancient pieces of Sculpture, found in the fortress of Kalinjer.

Two ancient Coins.
Singular specimen of Human Cra nium, and the Ossa spongiosa of a Kid.

Specimens of Minerals, considered by the Hindus as forms of Ganesa, and other Deities.
J. Tytler, Escq..................... Two large Statues, found under ground near Patna.
Captain Wilde. ..................... Collection of Minerals, from Berar.
II. H. Wilson, Esq. ............... Panoramic Painting of Benares, by a Native artist.
Lieutenant General Wood. .s.o.e. Model of Chinese Human Monster.

## $\mathbb{E} R \mathrm{~A} \mathbb{T}$.

> - 153 Latitude of Hansee Fort, should be $29^{\circ} 066^{\circ} 15^{\prime \prime}$
> Ditto Cantonment... 540
> Hissur ............... 940
> Mahím . . . ............ $28^{0} 58^{1} 30^{\prime \prime}$
> - 163. - 35 The heading in Italics "On the Ganges \&c." should be in the column of Province ow District.
> - 164 - 2 for Tirhut, $\quad$ read, "On the Ganges."
> - 189 - 8-8í2
> $-81^{\circ} 02^{\prime}$
> - 194 note - North Zenith - North of the ※enith.
> - 195 line 6 dele 2nd Miles.
> - 4 from bot. for 111634 - 144225
> - 109 - 4 for correcting - connecting.
> $-22-110 \quad-10$
> - 23 - Sang. - Lang.
> - 25 -Spatí - Spiti.
> dele comma after Spati and insert after Mcksung. $^{\text {a }}$.
> - 205 - 19 - Reflectiors - Repetitions. .
> - $209-1$ - 11,599 - 11689
> - 350 - 460
> $14-11,581$ - 10658
> $\begin{array}{ll}15-11,529 & -10676 \\ 13-62 & -55\end{array}$
> - 210 - 13 - 62 - 55
> - 218 In column of date 1817 Oct.18th - 1818 June.
> - 221 line last for 3S - 38
> - 224 Nov. 8th - Nahar - Nichar.
> VOL. XIV.
> 60

## Errata.




- 279 Title of the Table for Longitude 007853 real, Const. Log. 0,785̃\%. line 6 from bot. - 4's"l'7 - $451 \cdot 1$.
- 281

Insert Ar. Co. of Logarithms and Log. Sines.
283 Last. Table . Insert after Reductions to Centre Distance 7,9 Fest.

- 285 5th figure for at the 3 d Station. By the other two, read, at the 3d Station, by the
- 289 21st figure busert distances Stations $131647140 \cdot 3$ other two.
111647556.3
- 292 Remark to fig. 31 dele full stop after 10 and substitute small for Capital $\mathrm{S}_{0}$
- 318 line

3 for following read, other.
11 - formula - formalae.

- 321 Omit, all.
- 323 nole mand



[^0]:    * See Dr. Carey's Bengéli Grammar for the several changes here noticed in the latter part of Sect. I. "On the pronuaciation of the letters," frem page 4 to 10.

[^1]:    * This word bas the plural termination of the Telugrb language.

[^2]:    * Tegorude ncta, is Yojush the final consonant of which is onder, certain rules, convertible to $r$ and $h$

[^3]:    * Uliása, meaus literally that which is pleasant, an entertainment, but here a division, chapter, or dialogue.

[^4]:    * Tus word has the nominative masculine termination of the Telugu language: it means a domestic priest.

[^5]:    * An extract is hereafter given from this part of this ramnacript, as a specisucn ci the Fisenco translation.

[^6]:    * Thrs title, which is in the Tamil language and. character, is correctly spelt, according to the orthography of that language Iruccu Védam.

[^7]:    * The word thus tranlated in the original, "Oncho," Hunsu, is either the swan or the phoenicoptesos; in Southern Indice the former is usually represented as the vehicle of Saraswari, and of the geddess Tárá here mentioned (called, also the black Saraswati), and at Cúsi the latter:-There are

[^8]:    
    three distinctions of Hamsa, the Rajch-Hamsa, with a milt white body and deep ret beat and legs, this is the phcenicopteros or flamingo: the Mallicucsha-Hamsa, with brownish beak and legs, and
     wariety. - The gait of an elegant womar is compared by the Kindu poets to the proud bearing of the swan in the water; Sosnmbat, making a mistale similar to that in the text, translates a passage:3 which this allusion occurs in words to the following purport: ber gaiz resembled that of the Goose Dthesp witers have fallem into che sadied errors:

[^9]:    * Robertus de Nobilibus or Robert me Noblers, a nearrelation of his holiness Marcelius the II. and the nephew of Cardinal Bemarmun, founded the Madura mission about the year 1620. See note A,

[^10]:    *) He first translated in Tamil the prayers of the Catholic church as used by the Christians in the south of India, and all terms employed by them to convey ideas peculiar to the Christion faith are derived from him : they are found in Besch's Tanzil-Latin Dictionary, under reference to his authority.

    + See note A. The passage quoted from Mosherm was pointed out to me after this paper was written. Which is juster, the character Robertus de Nobilibus bears in India for probity or that he appears to have obtained in Europe for fraud, is not for me to determine. I shall only remark, that it was long the fashion for Protestant writers to calumniate indiscriminately the Jesuits.

[^11]:    * This ought, to preserve the sense exactly, to be Caroti, in the active, or Cifroyati, the causal, or, to preserve the metre, Curuté, the medial form of Crit, Do; Criytatis is the passive form and incorreculy, therefore, madie to govern the accusatives in the sentence.

[^12]:    * Not in the original.
    + The whole scope of these writings may be inferred from this extract: the intention is cvidently to destroy the existing belief, without regarding consequences or caring whether a blank be substituted for it or not. To the doctrine here taught, as preparatory to asystem of deism, nothing can be objected; but, after the teacher has succeeded in consincing his pupil that the deity never was incarnated, how is he to instruct lim in the mysteries of the Christian faith?

[^13]:    * The l's oponnishut, with a tiznlation, is appended to Dr. Carex's Sanscrit Grammar, and of this and of the Cénópunishut, a version, after Sançarácianiás Commentay, has been made by Ráa Mónes Ras, and published st Calcuttas

[^14]:    * Mantram and Braihma-nam, as collective terms, have a meaning different from those here assigned them; as explained in the following note.

[^15]:    * The Parroa-cándum, consisting chiefly of hymns, is often termed Mantran generally, and so considered, is composed of the Mcnirams of the four Wédas; to each Véda is attached a number of treatises, termed Upanishat and distinguished by a variety of titles; the whole.body of these, called, cellectively, Brahmanam, constitute the Uitavanceindam.
    + These as Mr. Cexibroore has clearly shewn, resolve themselves into three, fire, air and the sun, and ultimately into one, the Supreme Spirit.

[^16]:    * The story of Marys-chanda, in every respect, except it's Indiun character, the same as that of Job, which is told at length in the Purinus, and has been dramatized in Sanscrit and most of the spoken languages, is founded on an Itahúsa of the Véda. So is the fable of the Nishádia, so well znown to the Tamiz scluolar, by the beautiful paraphrase of it by the prince Adivíra Ráma Pandiya, entitled Nigazhdam.

[^17]:    * 'Tlie Upa Védus properly so called are now lost, imperfect imitations of them only remaining: they
     the scieace of music: these with the Híti $S$ ústig, are, also, called Chutzr Vilyuk, the four sciences.

[^18]:    * The former and latter divisions of tie Fida, under these general titles, as explained in a formes note.
    + The usual amangement of the titleg of the Veilas, are Rig, Pejur, Súmu, Alowrvina; I liere menton them as casually nurobered in the preceding accoust of the MiSS.

[^19]:    * Some sécts of the Jezos held with reepect to the hible, and some sects of Huhommedurs now hold with respect to the Koran, neanly the same opinion: this particular folly does not appear to have ever infected any denomination of Christions.

[^20]:    * Tue first term, Slócta, sigrifies ch qugtrain in any measure, and Vržtfum, bersc, but thus coman pounded, the particular stanza, the rules for which are here stated.

[^21]:    * Ir follows from what is here said; that the provalent measure of the Dédra is neanly the same as English blank rerse, or regarding, also, the length of the line, eractly that, formerly confined to lyrical composition, but consid red by modern poets as not unworthy, of the cric muse. As the cormposition of the Tedumust unquestinnably be referred to a very carly period of antiquity, the iambic metre ought, probably, to be considered as the first step in the invention of neasured language.

[^22]:    * The rules for the quantity of syllables in Sanscrit are minutely the same as in Tation ; when therefore, in the following extracts the long mark is placed over a pure vowel, it is long by nature, and when over one preceding a double or compound consonant, it is long by position.
     it ought to be Stauti or Stute. In the first verse of the last staza of this quotation Pavinis hearl is again broken; Bralunarudránèm in the plural is wsed instead of the dual Braka-rudrau. These errors are probably intentional, as the genuine Vélla is ofter ungrommatical; never, however in such a degree as to use the passive for the active voice, though the plural is often substituted or the duad памйет.

[^23]:    * Turs is an instance of the introduction of an universal species into the first verse.

[^24]:    * Thas is ansther instance of the occurrence of an unusual species in the first line.
    + Suctart, which may be translated hymn, like Miantram, Brímanam, \&eco varics in its use: it is applied to the whole of the pavamanam, to each of the chapters, and to onc or a number of consecutive Chitandus relating to one subject.

[^25]:    The manuscripts' descrihed in the preceding essay, which as Thare already stated, are in possession of the Catholic Missionaries at Pondicherry were discovered, as it may justly be said, for the knowledge of their existence was previously confined to a few individuals belonging to the mission, by Sir Alexin. dfr Jounson, the chief justice on the island of Ceylon, and Caprain Fraser, the Britisin residert at Pondicherry, during a visit of the former gentleman to the coast. It was from Sir Aifexander Johnson, also, that I received the printed copy of the Eizour Védam, and the information which induced me to make the inquiries eescecting these manuscripts, the result of which I hare here stated.

[^26]:    * 'Taefact is that Robert Nomil uses the word Brahmana always in the sense of priest, as indepd it is rendered though not with precision by Sir W. Jones in the institutes of Mexy; thus be calls the high priest of athe ferse and his associates Yúda-Sruhmana, and the father of the church Brahma-Viadigal.

[^27]:    * It is the pinus Deodára of Roxburgh; the Dévadáru of Sunscrit writers. H. H. W.

[^28]:    Hength, from the tip of the nose to end of the tail; the length $?_{5,0}^{\text {ret }}$ inchi of the face being 11 inches, and of the tail 3 inches only...... 5
    䧺eight, from shoulcer to toe ..... $3 \quad 2 \frac{x}{2}$
    Girth, at the chest ..... $211 \frac{1}{2}$
    Do. at the loins. ..... 2 多
    Length of the hair at the shoulders, 8 inches, but on the other parts of the body, it is short.

[^29]:    * Chermés found on the Betula Alnus.

[^30]:    * 7 is too great a discrepancy to be fairly attributable to error of observation only, perhaps it may have been caused in part, by the varying state of celestial refraction. I observed at Bairát in tempestuous weather, and was much interrupted by storms of wind, snow and sleet, and the atmosphere to the north zenith was generally cloudy. Lieutenant Imereert was rather more favored by the weather, and his observations thrre are preferable to mine.

[^31]:    * Thas is undoubtedty the Pinus Cedrus or Cedur of Lebanon. Hongson.

[^32]:    * Althouguthe truth of this be evident, and that it was confirmed by experience, yet it may be well to notice here, that supposing the wire to have fallen in the middle, below the straight line $\frac{1}{4}$ of an inch, which it certainly did not, the esror in the length of the rod would be only $\frac{1}{9600}$ of an inch.

[^33]:    * About two feet.

[^34]:    * Tue cheeks of the fods were not quite parallel to their axis; the error was found, and this is the correction due to it.

[^35]:    * In these two operations the pairs were meas ured together, the quantities inserted in the columes are half the length found for the 4 rods.
    VOL، xilvo

[^36]:    * Occastoned by the irregularities of the table on which it was stretched. This equation was calculated:

[^37]:    * The divisions of this Nonius were as was before remarked, reckoucd in a reverse order.

[^38]:    * 'Ime first calculations gave but 853 feet for this height, but the observations were much less complete than those subsequently made as described below. It has therefore been necessary to cancel the first list of results, and to substitute a new one in which the difference of 160 feet has been added to the elorations formerly inserted, and anumber of additional observations have been appended.

[^39]:    * "On peut toujours concevoir un ellipsoide, tangent a chaque point dela surface tervestre " and sur lequel les mesures Geodesiques, les loggitudes et les latitudes, a partir dupoint de contia. 6" gence dans unepetite etendue seraient les mémes qú’a cette surface.". La Place. Mec. Celeste. vor. Xiv.

[^40]:    * Tex arc from which this degzee is deduced has been since extended by Messrs. Brot and ARrago to $12{ }^{\circ}$, having it's midale point little differigg from the mean degree $45^{\circ}$. As however Cap. tain Honcson figed on the ellipticity, which we were to use previous to seeing any account of this zneasurement, and as the differace which would arise from adsaiting it into the calculation would have chen very trilling, it was not thought necessafy to loose so nuch time as a revision of all our work vould bave required, especially considering the little, effect a small change in the ellipticity would produce in tho reoults:

[^41]:    * Tuere are shorter add more convenient formula (approzimate bovever), which were not so Gamilhar at the time as those used which are strictly correct.
    t It has been demonstrated by M. Legendre, that the difference between the spherica! and spheroidecal angles in the largest triangles that occurred in the French survey, does yot ausunt to $\frac{1}{\text { Co }}$ of a second.

[^42]:    * If we suppose the earth to be cut at any point by a plane perpendicular to the meridian, in that point the centre of curvature of this section, at the point where it cuts the meridian, is the point in which the direction of gravity or of the plumb line intersects the axis of the earth. Playfiliz's Outlines of Natural Phil. p. 55. § 62. vol. $2 d$.

[^43]:    * It is not to be supposed that this is the only effect which the spheroidal figure has on the difference of latitude. It has mach more; the value of the angle $A E B$, depending altogether on the degree of ellipticity.

[^44]:    * The value of $j_{2}$ vasies of course with that of $\delta$.

[^45]:    * $f$, is meglected here as 100 small to atact the value of $x$.

[^46]:    * From हुड Chúda (Sanscrit), a crest. H. H. W.

[^47]:    * By some unsatisfactory observations made before, Captain Hodason had found it $28^{\circ} 03^{\circ} 00^{\circ}$. On revising the angle however we found it as above.

[^48]:    *. Consult the $20 t h$ Chapter of the 6 th Book, in which the account of so many countries all over India, camot be the result of the travels of several individuals, but must, be extracted from suç lists. In the 17th Chapter of the same book, Pliny says that Seneca, in his attempt towards a dee. scription of India, had mentioned no less than sixty rivers, one hundred and twenty nations or countries, besides mountains, and in the latter part of the said chapter, out of this account of Senect, he gives us the names of several mountains, nations and rivers.

    IT is my opinion that in the times of Pciny and Prolemy, they had a more full and copious geographical account of India, than we had forty years ago, Unluckily through the want of regular itinoraries and astronomical observations, their longitudes and latitudes were only inferred; and this alone was suficient to throw the whole of their geographical information, into a shapeless and inextricable mass of confusion.

[^49]:    * In which dú is the mark of the possessive case.

[^50]:    * See Alph. Tibet, p. 344, and 'Des Guignes, \&c. \&c.

[^51]:    * G. Commentary, p. 695 of my MS.
    $\dagger$ Scanda-puráńa, section of Revá. Bhágavat, section the 10tho

[^52]:    * Námrípa, is different from Cámrúpa, which is toward the N. W. in A'sima, and the former toward the S. E. Cámrúpa is to the north of the Brahma-putra, and Núnsrápa to the south of it.

[^53]:    * Page 598 of my MS.

[^54]:    * Account of Asáma, Asiatick Researches, Vol. 2d p. 175.

[^55]:    * Asiattick Researches, Yol. 6th, p. 228.
    + Asiaticla Researches, Vol, 5th, p. 225.

[^56]:    *. Lssiatick Resear ches, Vol. 7th, p. 183.

[^57]:    * Mahá-bhúrat, Bhishma, section and commentary.

[^58]:    * ,Beschreibung von Hindoostan, \&cc. p. 298. Some account of it is given also, from native authorities by Captain Blunt, Asiatick Researches, Vol. 7 7th p. 100.
    t SE\& Memoir of a map, \&co.p. 234.

[^59]:    * In Sanscrit the words va, vali, or mati, man, and mant originally signify, in composition, likones; ; but in many iustances they imply fullness, abundance. In Latin we have Fareimen, furciarcntum likewise, \&c.

[^60]:    * See Andrew Brice's Dictionary ad vocem aad others.
    + Commentary on the Geog. of the M. Bh.

[^61]:    * In the Mégha Dúta this river is said to have originated in the blood shed by Rantı Déva at the Gomédhás or offerings of kine.

[^62]:    * See Dictionnaire de Commerce.

[^63]:    * Amarcosó $a$, and translation by Mr. Colerroore, p. 385.

[^64]:    * Ayin Acberi, Vol. ad Tucseem Jumma, p. 84.

    FStrabo Lib. 11, p. 516.

[^65]:    * IN the origiual MS. these words are written Sála-máyáa, Sáli-pura and Sáli- mrúma, that is to say, thay have adopted the pronunciation of these words, such as it is in the spokeo dialects. This is occasionally the case in geographical books in the Sanscrit language.

[^66]:    * Erroneously written Terete-coonah by Major Rennele, im his beautiful map of the island of Cossim-bazar.

[^67]:    - Pliny Lib. 37. Cap. 2.
    - Section of the Himavat-cehanda.

    5

[^68]:    * In his Commentary on the Mahá-Bhárat.

[^69]:    * Probablit the Codura of Ptolemy.

[^70]:    * Modern Univers. History, Vol. 5th. p. 279. See also Edward Terky and others.
    + Section of the Préta-c'hand'a.
    

[^71]:    * See French Encyclopedia, v. Albadara \& magical term in that country.
    + Ayin Acbert, Vol. 2d. p. s, \&ico

[^72]:    * Asiatick Researches, Vol. 5. p. 231.

[^73]:    ＊Asiatick IResearches，Vol，6．p．227．

    + D＇herbilot ad yoc．Ḱhancou．

[^74]:    * Histoire des Huns. Vole 4, p. 176.
    + Embassy to Ává, Vol. 1st. p. 181.

[^75]:    * Rappresentazia de Padre Cappuc. Mission. della stata presente della missiom delgran. Thibelo Roma, 1738; also Alphab. Tibet. p. 429 \& 429.
    + Aitin Acberi, Vol. 2d. p. 5.

[^76]:    * Asiaticl Researches, Vol. 6. p. 226.

[^77]:    * Du Hazde's China, Vol. 1st. p. 63.

[^78]:    * Emeassy to Ává, Vol. 1st. p. 180.
    + Commentary on the Máha-bhárata, section the third.

[^79]:    * Cishétra-samásu, section of Midó imsi.

[^80]:    * Cshétra-samása and Bhivdina-cosá
    t See New Directions, \&ec. by Benxamin Lacak, p. 20. Mr. B. Plaisted, whitstsurveying some parts of the Sunderbiunds, was carried away by an alligater, which he mistook for the roften trunk of a tree. This was written at the end of his fisurvey, where he thus left off, the Surpeyor General's Onice, where I satr it about 40 years ago.

[^81]:    *. Asiatick Researches, Vol. VI. p. 299.

[^82]:    Embasse to Avó, Vol. 2d. p. 25s.

[^83]:    * In an autograph. MS. of the author, in my possession. The Padre vrote about the year 1590, in the prisons of Semma in Arabia.

[^84]:    * They have however been revealed to Capt. Hodgson, see page 117 of this volume. - the account here given is so correct that it proves the actual visitation of the spot by the Hindis.-H. H. W.

[^85]:    * History of Bengal, by Major Stevyarty p. 52.

[^86]:    * See aslo Geog. Dict. of And. Biace, of Exeter woce Jesuar.

[^87]:    * P. 353.

[^88]:    *. Alian-de-animal, LiV. 3. C. 4 。

[^89]:    * The originals of Nos. 1, 4 and 6, are in the Toghra character, No. 2, in a rough Nuskh, and Nos. 3 and " 5 , in Nastalcik. The translations have been made in Calcutta: the passages which are doubtful in the original have been under lined in the copies. H. H. W.

