|
STEPS TO AN ECOLOGY OF MIND: COLLECTED ESSAYS IN ANTHROPOLOGY, PSYCHIATRY, EVOLUTION AND EPISTEMOLOGY |
|
Part III: Form and Pathology in Relationship Social Planning and the Concept of Deutero-Learning [1] Let me take as focus for this comment the last item [2] in Dr. Mead’s summary of her paper. To the layman who has not occupied himself with the comparative study of human cultures, this recommendation may appear strange; it may appear to be an ethical or philosophical paradox, a suggestion that we discard purpose in order to achieve our purpose; it may even call to mind some of the basic aphorisms of Christianity and Taoism. Such aphorisms are familiar enough; but the layman will be a little surprised to find them coming from a scientist and dressed in all the paraphernalia of analytic thought. To other anthropologists and social scientists, Dr. Mead’s recommendations will be even more surprising, and perhaps more meaningless, because instrumentality and “blueprints” are an essential ingredient in the whole structure of life as science sees it. Likewise, to those in political life, Dr. Mead’s recommendation will be strange, since they see decisions as classifiable into policy-making decisions versus executive decisions. The governors and the scientists alike (not to mention the commercial world) see human affairs as patterned upon purpose, means and ends, connation and satisfaction. If anybody doubts that we tend to regard purpose and instrumentality as distinctively human, let him consider the old quip about eating and living. The creature who “eats to live” is the highest human; he who “lives to eat” is coarser-grained, but still human; but if he just “eats and lives,” without attributing instrumentality or a spurious priority in time sequence to either process, he is rated only among the animals, and some, less kind, will regard him as vegetable. Dr. Mead’s contribution consists in this—that she, fortified by comparative study of other cultures, has been able to transcend the habits of thought current in her own culture and has been able to say virtually this: “Before we apply social science to our own national affairs, we must re-examine and change our habits of thought on the subject of means and ends. We have learnt, in our cultural setting, to classify behavior into `means’ and `ends’ and if we go on. defining ends as separate from means and apply the social sciences as crudely instrumental means, using the recipes of science to manipulate people, we shall arrive at a totalitarian rather than a democratic system of life.” The solution which she offers is that we look for the “direction,” and “values” implicit in the means, rather than looking ahead to a blueprinted goal and thinking of this goal as justifying or not justifying manipulative means. We have to find the value of a planned act implicit in and simultaneous with the act itself, not separate from it in the sense that the act would derive its value from reference to a future end or goal. Dr. Mead’s paper is, in fact, not a direct preachment about ends and means; she does not say that ends either do or do not justify the means. She is talking not directly about ends and means, but about the way we tend to think about ways and means, and about the dangers inherent in our habit of thought. It is specifically at this level that the anthropologist has most to contribute to our problems. It is his task to see the highest common factor implicit in a vast variety of human phenomena, or inversely, to decide whether phenomena which appear to be similar are not intrinsically different. He may go to one South Sea community, such as the Manus, and there find that though everything that the natives do is concretely different from our own behavior, yet the underlying system of motives is rather closely comparable with our own love of caution and wealth accumulation; or again he may go to another society such as Bali and there find that, while the outward appearance of the native religion is closely comparable with our own—kneeling to pray, incense, intoned utterances punctuated by a bell, etc.—the basic emotional attitudes are fundamentally different. In Balinese religion we find an approval accorded to rote, nonemotional performance of certain acts instead of the insistence upon correct emotional attitude, characteristic of Christian churches. In every case the anthropologist is concerned not with mere description but with a slightly higher degree of abstraction, a wider degree of generalization. His first task is the meticulous collection of masses of concrete observations of native life—but the next step is not a mere summarizing of these data; it is rather to interpret the data in an abstract language which shall transcend and comprehend the vocabulary and notions explicit and implicit in our own culture. It is not possible to give a scientific description of a native culture in English words; the anthropologist must devise a more abstract vocabulary in terms of which both our own and the native culture can be described. This then is the type of discipline which has enabled Dr. Mead to point out that a discrepancy—a basic and fundamental discrepancy—exists between “social engineering,” manipulating people in order to achieve a planned blue-print society, and the ideals of democracy, the “supreme worth and moral responsibility of the individual human per-son.” The two conflicting motifs have long been implicit in our culture, science has had instrumental leanings since before the Industrial Revolution, and emphasis upon individual worth and responsibility is even older. The threat of conflict between the two motifs has only come recently, with increasing consciousness of, and emphasis upon, the democratic motif and simultaneous spread of the instrumental motif. Finally, the conflict is now a life-or-death struggle over the role which the social sciences shall play in the ordering of human relationships. It is hardly an exaggeration to say that this war is ideologically about just this—the role of the social sciences. Are we to reserve the techniques and the right to manipulate people as the privilege of a few planning, goal-oriented, and power-hungry individuals, to whom the instrumentality of science makes a natural appeal? Now that we have the techniques, are we, in cold blood, going to treat people as things? Or what are we going to do with these techniques? The problem is one of very great difficulty as well as urgency, and it is doubly difficult because we, as scientists, are deeply soaked in habits of instrumental thought those of us, at least, for whom science is a part of life, as well as a beautiful and dignified abstraction. Let us try to surmount this additional source of difficulty by turning the tools of science upon this habit of instrumental thought and upon the new habit which Dr. Mead envisages—the habit which looks for “direction” and “value” in the chosen act, rather than in defined goals. Clearly, both of these habits are ways of looking at time sequences. In the old jargon of psychology, they represent different ways of apperceiving sequences of behavior, or in the newer jargon of gestalt psychology, they might both be described as habits of looking for one or another sort of contextual frame for behavior. The problem which Dr. Mead—who advocates a change in such habits—raises is the problem of how habits of this abstract order are learned. This is not the simple type of question which is posed in most psychological laboratories, “Under what circumstances will a dog learn to salivate in response to a bell?” or, “What variables govern success in rote learning?” Our question is one degree more abstract, and, in a sense, bridges the gap between the experimental work on simple learning and the approach of the gestalt psychologists. We are asking, “How does the dog acquire a habit of punctuating or apperceiving the infinitely complex stream of events (including his own behavior) so that this stream appears to be made up of one type of short sequences rather than an-other?” Or, substituting the scientist for the dog, we might ask, “What circumstances determine that a given scientist will punctuate the stream of events so as to conclude that all is predetermined, while another will see the stream of events as so regular as to be susceptible of control?” Or, again, on the same level of abstraction let us ask—and this question is very relevant to the promotion of democracy—”What circumstances promote that specific habitual phrasing of the universe which we call `free will’ and those others which we call `responsibility,’ `constructiveness,’ `energy,’ `passivity,’ `dominance,’ and the rest?” For all these abstract qualities, the essential stock-in-trade of the educators, can be seen as various habits of punctuating the stream of experience so that it takes on one or another sort of coherence and sense. They are abstractions which begin to assume some operational meaning when we see them take their place on a conceptual level between the statements of simple learning and those of gestalt psychology. We can, for example, put our finger very simply on the process which leads to tragedy and disillusion whenever men decide that the “end justifies the means” in their efforts to achieve either a Christian or a blueprinted heaven-on-earth. They ignore the fact that in social manipulation, the tools are not hammers and screwdrivers. A screwdriver is not seriously affected when, in an emergency, we use it as a wedge; and a hammer’s outlook on life is not affected because we sometimes use its handle as a simple lever. But in social manipulation our tools are people, and people learn, and they acquire habits which are more subtle and pervasive than the tricks which the blueprinter teaches them. With the best intentions in the world, he may train children to spy upon their parents in order to eradicate some tendency prejudicial to the success of his blueprint, but because the children are people they will do more than learn this simple trick—they will build this experience into their whole philosophy of life; it will color all their future attitudes to-ward authority. Whenever they meet certain sorts of con-text, they will tend to see these contexts as structured on an earlier familiar pattern. The blueprinter may derive an initial advantage from the children’s tricks; but the ultimate success of his blueprint may be destroyed by the habits of mind which were learned with the trick. (Unfortunately, there is no reason to believe that the Nazi blueprint will break down for these reasons. It is probable that the unpleasant attitudes here referred to are envisaged as basic both to the plan itself and to the means of achieving it. The road to hell can also be paved with bad intentions, though well-intentioned people find this hard to believe.) We are dealing, apparently, with a sort of habit which is a by-product of the learning process. When Dr. Mead tells us that we should leave off thinking in terms of blue-prints and should instead evaluate our planned acts in terms of their immediate implicit value, she is saying that in the upbringing and education of children, we ought to try to inculcate a sort of by-product habit rather different from that which we acquired and which we daily reinforce in ourselves in our contacts with science, politics, newspapers, and so on. She states perfectly clearly that this new shift in the emphasis or gestalt of our thinking will be a setting forth into uncharted waters. We cannot know what manner of human beings will result from such a course, nor can we be sure that we ourselves would feel at home in the world of 1980. Dr. Mead can only tell us that if we proceed on the course which would seem most natural, planning our applications of social science as a means of attaining a defined goal, we shall surely hit a rock. She has charted the rock for us, and advises that we embark on a course in a direction where the rock is not; but in a new, still uncharted direction. Her paper raises the question of how we are to chart this new direction. Actually, science can give us- something approaching a chart. I indicated above that we might see a mixed bunch of abstract terms—free will, predestination, responsibility, constructiveness, passivity, dominance, etc.—as all of them descriptive of apperceptive habits, habitual ways of looking at the stream of events of which our own behavior is a part, and further that these habits might all be, in some sense, byproducts of the learning process. Our next task, if we are to achieve some sort of chart, is clearly to get something better than a random list of these possible habits. We must reduce this list to a classification which shall show how each of these habits is systematically related to the others. We meet in common agreement that a sense of individual autonomy, a habit of mind somehow related to what I have called “free will,” is an essential of democracy, but we are still not perfectly clear as to how this autonomy should be defined operationally. What, for example, is the relation between “autonomy” and compulsive negativism? The gas stations which refuse to conform to the curfew—are they or are they not showing a fine democratic spirit? This sort of “negativism” is undoubtedly of the same degree of abstraction as “free will” or “determinism”; like them it is an habitual way of apperceiving contexts, event sequences and own behavior; but it is not clear whether this negativism is a “subspecies” of individual autonomy; or is it rather some entirely different habit? Similarly, we need to know how the new habit of thought which Dr. Mead advocates is related to the others. Evidently our need is for something better than a random list of these habits of mind. We need some systematic frame-work or classification which shall show how each of these habits is related to the others, and such a classification might provide us with something approaching the chart we lack. Dr. Mead tells us to sail into as yet uncharted waters, adopting a new habit of thought; but if we knew how this habit is related to others, we might be able to judge of the benefits and dangers, the possible pitfalls of such a course. Such a chart might provide us with the answers to some of the questions which Dr. Mead raises—as to how we are to judge of the “direction” and value implicit in our planned acts. You must not expect the social scientist to produce such a chart or classification at a moment’s notice, like a rabbit out of a hat, but I think we can take a first step in this direction; we can suggest some of the basic themes—the cardinal points, if you like—upon which the final classification must be built. We have noted that the sorts of habit with which we are concerned are, in some sense, by-products of the learning processes, and it is therefore natural that we look first to the phenomena of simple learning as likely to provide us with a clue. We are raising questions one degree more abstract than those chiefly studied by the experimental psychologists, but it is still to their laboratories that we must look for our answers. Now it so happens that in the psychological laboratories there is a common phenomenon of a somewhat higher degree of abstraction or generality than those which the experiments are planned to elucidate. It is a commonplace that the experimental subject—whether animal or man, becomes a better subject after repeated experiments. He not only learns to salivate at the appropriate moments, or to recite the appropriate nonsense syllables; he also, in some way, learns to learn. He not only solves the problems set him by the experimenter, where each solving is a piece of simple learning; but, more than this, he becomes more and more skilled in the solving of problems. In semigestalt or semianthropomorphic phraseology, we might say that the subject is learning to orient himself to certain types of contexts, or is acquiring “insight” into the contexts of problem solving. In the jargon of this paper, we may say that the subject has acquired a habit of looking for contexts and sequences of one type rather than another, a habit of “punctuating” the stream of events to give repetitions of a certain type of meaningful sequence. The line of argument which we have followed has brought us to a point at which statements about simple learning meet statements about gestalt and contextual structure, and we have reached the hypothesis that “learning to learn” is a synonym for the acquisition of that class of abstract habits of thought with which this paper is concerned; that the states of mind which we call “free will,” instrumental thinking, dominance, passivity, etc., are acquired by a process which we may equate with “learning to learn.” This hypothesis is to some extent new [3] to psychologists as well as to laymen, and therefore I must digress at this point to supply technical readers with a more precise statement of my meaning. I must demonstrate at least my willingness to state this bridge between simple learning and gestalt in operational terms. Let us coin two words, “proto-learning” and “deuterolearning,” to avoid the labor of defining operationally all the other terms in the field (transfer of learning, generalization, etc., etc.). Let us say that there are two sorts of gradient discernible in all continued learning. The gradient at any point on a simple learning curve (e.g., a curve of rote learning) we will say chiefly represents rate of proto-learning. If, however, we inflict a series of similar learning experiments on the same subject, we shall find that in each successive experiment the subject has a somewhat steeper proto-learning gradient, that he learns somewhat more rapidly. This progessive change in rate of proto-learning we will call “deutero-learning.” From this point we can easily go on to represent deuterolearning graphically with a curve whose gradient shall represent rate of deutero-learning. Such a representation might be obtained, for example, by intersecting the series of protolearning curves at some arbitarily chosen number of trials, and noting what proportion of successful responses occurred in each experiment at this point. The curve of deutero-learning would then be obtained by plotting these numbers against the serial numbers of the experiments. [4] Fig. 1. Three Successive Learning Curves with the same subject, showing increase in rate of learning in successive experiments. Fig. 2. Deutero-learning Curve derived from the three learning experiments in Fig. 1. In this definition of proto- and deutero-learning, one phrase remains conspicuously vague, the phrase “a series of similar experiments.” For purposes of illustration, I imagined a series of experiments in rote learning, each experiment similar to the last, except for the substitution of a new series of nonsense syllables in place of those already learned. In this example, the curve of deutero-learning represented in-creasing proficiency in the business of rote learning, and, as an experimental fact, such increase in rote proficiency can be demonstrated. [5] Apart from rote learning, it is much more difficult to de-fine what we mean by saying that one learning context is “similar” to another, unless we are content to refer the matter back to the experimentalists by saying that learning contexts shall be considered to be “similar” one to another whenever it can be shown experimentally that experience of learning in one context does, as a matter of fact, promote speed of learning in another, and asking the experimentalists to find out for us what sort of classification they can build up by use of this criterion. We may hope that they will do this; but we cannot hope for immediate answers to our questions, because there are very serious difficulties in the way of such experimentation. Experiments in simple learning are already difficult enough to control and to per-form with critical exactness, and experiments in deutero-learning are likely to prove almost impossible. There is, however, an alternative course open to us. When we equated “learning to learn” with acquiring apperceptive habits, this did not exclude the possibility that such habits might be acquired in other ways. To suggest that the only method of acquiring one of these habits is through repeated experience of learning contexts of a given kind would be logically analogous to saying that the only way to roast pig is by burning the house down. It is obvious that in human education such habits are acquired in very various ways. We are not concerned with a hypothetical isolated individual in contact with an impersonal events stream, but rather with real individuals who have complex emotional patterns of relationship with other individuals. In such a real world, the individual will be led to acquire or reject apperceptive habits by the very complex phenomena of personal example, tone of voice, hostility, love, etc. Many such habits, too, will be conveyed to him, not through his own naked experience of the stream of events, for no human beings (not even scientists) are naked in this sense. The events stream is mediated to them through language, art, technology, and other cultural media which are structured at every point by tramlines of apperceptive habit. It therefore follows that the psychological laboratory is not the only possible source of knowledge about these habits; we may turn instead to the contrasting patterns implicit and explicit in the various cultures of the world studied by the anthropologists. We can amplify our list of these obscure habits by adding those which have been developed in cultures other than our own. Most profitably, I believe, we can combine the insights of the experimental psychologists with those of the anthropologists, taking the contexts of experimental learning in the laboratory and asking of each what sort of apperceptive habit we should expect to find associated with it; then looking around the world for human cultures in which this habit has been developed. Inversely, we may be able to get a more definite—more operational—definition of such habits as “free will” if we ask about each, “What sort of experimental learning context would we devise in order to inculcate this habit?” “How would we rig the maze or problem-box so that the anthropomorphic rat shall obtain a repeated and reinforced impression of his own free will?” The classification of contexts of experimental learning is as yet very incomplete, but certain definite advances have been made. [6] It is possible to classify the principal contexts of positive learning (as distinct from negative learning or inhibition, learning not to do things) under four heads, as follows:
These are characterized by a rigid time sequence in which the conditioned stimulus (e.g., buzzer) always pre-cedes the unconditioned stimulus (e.g., meat powder) by a fixed interval of time. This rigid sequence of events is not altered by anything that the animal may do. In these con-texts, the animal learns to respond to the conditioned stimulus with behavior (e.g., salivation) which was formerly evoked only by the unconditioned stimulus.
These are characterized by a sequence which depends upon the animal’s behavior. The unconditioned stimulus in these contexts is usually vague (e.g., the whole sum of circumstances in which the animal is put, the problem-box) and may be internal to the animal (e.g., hunger). If and when, under these circumstances, the animal performs some act within its behavioral repertoire and previously selected by the experimenter (e.g., lifts its leg), it is immediately rewarded.
These are also characterized by a conditional sequence. The unconditioned stimulus is usually definite (e.g., a warning buzzer) and this is followed by an unpleasant experience (e.g., electric shock) unless in the interval the animal per-forms some selected act (e.g., lifts leg).
These are characterized by the predominant conditioned stimulus being an act of the subject. He learns, for example, always to give the conditioned response (nonsense syllable B) after he has himself uttered the conditioned stimulus (nonsense syllable A). This small beginning of a classification [7] will be sufficient to illustrate the principles with which we are concerned and we can now go on to ask about the occurrence of the appropriate apperceptive habits among men of various cultures. Of greatest interest—because least familiar—are the Pavlovian pat-terns and the patterns of rote. It is a little hard for members of Western civilization to believe that whole systems of behavior can be built on premises other than our own mixture of instrumental reward and instrumental avoidance. The Trobriand Islanders, however, appear to live a life whose coherence and sense is based upon looking at events through Pavlovian spectacles, only slightly tinted with the hope of instrumental reward, while the life of the Balinese is sensible if we accept premises based upon combining rote with instrumental avoidance. Clearly, to the “pure” Pavlovian, only a very limited fatal-ism would be possible. He would see all events as preordained and he would see himself as fated only to search for omens, not able to influence the course of events—able, at most, from his reading of the omens, to put himself in the properly receptive state, e.g., by salivation, before the inevitable occurred. Trobriand culture is not so purely Pavlovian as this, but Dr. Lee, [8] analyzing Professor Malinowski’s rich observations, has shown that Trobriand phrasings of purpose, cause, and effect are profoundly different from our own; and though Dr. Lee does not use the sort of classification here proposed, it appears from Trobriand magic that these people continually exhibit a habit of thinking that to act as if a thing were so will make it so. In this sense, we may describe them as semi-Pavlovians who have decided that “salivation” is instrumental to obtaining “meat powder.” Malinowski, for example, gives us a dramatic description of the almost physiological extremes of rage [9] which the Trobriand black magician practices in his incantations, and we may take this as an illustration of the semi-Pavlovian frame of mind in contrast with the very various types of magical procedure in other parts of the world, where, for example, the efficacy of a spell may be associated not with the intensity but with the extreme rote accuracy of the recitation. Among the Balinese [10] we find another pattern which contrasts sharply both with our own and with that of the Trobrianders. The treatment of children is such that they learn not to see life as composed of connative sequences ending in satisfaction, but rather to see it as composed of rote sequences inherently satisfying in themselves—a pattern which is to some extent related to that pattern which Dr. Mead has recommended, of looking for value in the act itself rather than regarding the act as a means to an end. There is, how-ever, one very important difference between the Balinese pattern and that recommended by Dr. Mead. The Balinese pattern is essentially derivative from contexts of instrumental avoidance; they see the world as dangerous, and themselves as avoiding, by the endless rote behavior of ritual and courtesy, the ever-present risk of faux pas. Their life is built upon fear, albeit that in general they enjoy fear. The positive value with which they endow their immediate acts, not looking for a goal, is somehow associated with this enjoyment of fear. It is the acrobat’s enjoyment both of the thrill and of his own virtuosity in avoiding disaster. We are now, after a somewhat long and technical excursion into psychological laboratories and foreign cultures, in a position to examine Dr. Mead’s proposal in somewhat more concrete terms. She advises that when we apply the social sciences we look for “direction” and “value” in our very acts, rather than orient ourselves to some blueprinted goal. She is not telling us that we ought to be like the Balinese, except in our time orientation, and she would be the first to disparage any suggestion that fear (even enjoyed fear) should be our basis for assigning value to our acts. Rather, as I understand it, this basis should be some sort of hope—not looking to some far-off future, but still some sort of hope or optimism. In fact, we might summarize the recommended attitude by saying that it ought to be formally related to instrumental reward, as the Balinese attitude is related to instrumental avoidance. Such an attitude is, I believe, feasible. The Balinese attitude might be defined as a habit of rote sequences inspired by a thrilling sense of ever-imminent but indefinite danger, and I think that what Dr. Mead is urging us toward might be defined in like terms, as a habit of rote sequences inspired by a thrilling sense of ever-imminent but undefined reward. As to the rote component, which is almost certainly a necessary concomitant of the peculiar time orientation advocated by Dr. Mead, 1, personally, would welcome it, and I believe that it would be infinitely preferable to the compulsive type of accuracy after which we strive. Anxious taking-care and automatic, rote caution are alternative habits which perform the same function. We can either have the habit of automatically looking before we cross the street, or the habit of carefully remembering to look. Of the two I prefer the automatic, and I think that, if Dr. Mead’s recommendation implies as increase in rote automatism, we ought to accept it. Already, indeed, our schools are inculcating more and more automatism in such processes as reading, writing, arithmetic, and languages. As to the reward component, this, too, should not be beyond our reach. If the Balinese is kept busy and happy by a nameless, shapeless fear, not located in space or time, we might be kept on our toes by a nameless, shapeless, unlocated hope of enormous achievement. For such a hope to be effective, the achievement need scarcely be defined. All we need to be sure of is that, at any moment, achievement may be just around the corner, and, true or false, this can never be tested. We have got to be like those few artists and scientists who work with this urgent sort of inspiration, the urgency that comes from feeling that great discovery, the answer to all our problems, or great creation, the perfect sonnet, is always only just beyond our reach, or like the mother of a child who feels that, provided she pay constant enough attention, there is a real hope that her child may be that infinitely rare phenomenon, a great and happy person. A Theory of Play and Fantasy [11] This research was planned and started with an hypothesis to guide our investigations, the task of the investigators being to collect relevant observational data and, in the process, to amplify and modify the hypothesis. The hypothesis will here be described as it has grown in our thinking. Earlier fundamental work of Whitehead, Russell, [12] Wittgenstein, [13] Carnap, [14] Whorf, [15] etc., as well as my own at-tempt [16] to use this earlier thinking as an epistemological base for psychiatric theory, led to a series of generalizations:
(13) What has previously been said about play can be used as an introductory example for the discussion of frames and contexts. In sum, it is our hypothesis that the message “This is play” establishes a paradoxical frame comparable to Epimenides’ paradox. This frame may be diagrammed thus:
Epidemiology of a Schizophrenia [26] If we are to discuss the epidemiology of mental conditions, i.e., conditions partly induced by experience, our first task is to pinpoint a defect of an ideational system sufficiently so that we can go on from that pinpointing to postulate what sort of contexts of learning might induce this formal defect. It is conventionally said that schizophrenics have “ego weakness.” I now define ego weakness as trouble in identifying and interpreting those signals which should tell the individual what sort of a message a message is, i.e., trouble with the signals of the same logical type as the signal “This is play.” For example, a patient comes into the hospital can-teen and the girl behind the counter says, “What can I do for you?” The patient is in doubt as to what sort of a message this is—is it a message about doing him in? Is it an indication that she wants him to go to bed with her? Or is it an offer of a cup of coffee? He hears the message and does not know what sort or order of a message it is. He is unable to pick up the more abstract labels which we are most of us able to use conventionally but are most of us unable to identify in the sense that we don’t know what told us what sort of a message it was. It is as if we some-how make a correct guess. We are actually quite unconscious of receiving these messages which tell us what sorts of message we receive. Difficulty with signals of this sort seems to be the center of a syndrome which is characteristic for a group of schizophrenics, so therefore we can reasonably look for an etiology starting from this symptomatology as formally defined. When you begin thinking in this way, a great deal of what the schizophrenic says falls into place as a description of his experience. That is, we have a second lead toward the theory of etiology or transmission. The first lead is from the symptom. We ask, “How does a human individual acquire an imperfect ability to discriminate these specific signals?” and when we look at his speeches, we find that, in that peculiar language which is schizophrenic salad, he is de-scribing a :traumatic situation which involves a metacommunicative tangle. A patient, for example, has a central notion, that “some-thing moved in space,” and that that is why he cracked up. I somehow, from the way he spoke about “space,” got an idea that space is his mother and said so. He said, “No, space is the mother.” I suggested to him that she might be in some way a cause of his troubles. He said, “I never condemned her.” At a certain point he got angry, and he said—this is verbatim—”If we say she had movement in her because of what she caused, we are only condemning ourselves.” Something moved in space that made him crack up. Space is not his mother, it is the mother. But now we focus upon his mother whom he says he never condemned. And he now says, “If we say that she had movement in her because of what she caused, we are only condemning our-selves.” Look very carefully at the logical structure of that last quotation. It is circular. It implies a way of interaction and chronic cross-purposes with the mother such that for the child to make those moves which might straighten out the misunderstanding was also prohibited. On another occasion he had skipped his therapy session in the morning, and I went over to the dining hall at supper time to see him and assure him that he would see me next day. He refused to look at me. He looked away. I made some remark about 9.30 the next morning—no answer. Then, with great difficulty, he said, “The judge disapproves.” Be-fore I left him, I said, “You need a defense attorney,” and when I found him on the grounds next morning I said, “Here is your defense attorney,” and we went into session together. I started out by saying, “Am I right in supposing that the judge not only disapproves of your talking to me but also disapproves of your telling me that he disapproves?” He said, “Yes!” That is, we are dealing with two levels here. The “judge” disapproves of the attempt to straighten out the confusions and disapproves of communicating the fact of his (the judge’s) disapproval. We have to look for an etiology involving multiple levels of trauma. I am not talking at all about the content of these traumatic sequences, whether they be sexual, or oral. Nor am I talking about the age of the subject at the time of trauma, nor about which parent is involved. That is all episodic as far as I’m concerned. I’m only building up toward the statement that the trauma must have had formal structure in the sense that multiple logical types were played against each other to generate this particular pathology in this individual. Now, if you look at our conventional communication with one another, what you find is that we weave these logical types with incredible complexity and quite surprising facility. We even make jokes, and these may be difficult for a foreigner to understand. Most jokes, both canned and spontaneous, and nearly anywhere, are weavings of multiple logical types. Kidding and hazing similarly depend upon the unresolved question whether the kid-ee can identify that this is kidding. In any culture, the individuals acquire quite extraordinary skill in handling not only the flat identification of what sort of a message a message is but in dealing in multiple identifications of what sort of a message a message is. When we meet these multiple identifications we laugh, and we make new psychological discoveries about what goes on inside ourselves, which is perhaps the reward of real humor. But there are people who have the utmost difficulty with this problem of multiple levels, and it seems to me that this unequal distribution of ability is a phenomenon which we can approach with the questions and terms of epidemiology. What is needed for a child to acquire, or to not acquire, a skill in the ways of interpreting these signals? There is not only the miracle that any of them acquire the skills—and a lot of them do—there is also the other side, that a great many people have difficulty. There are people, for example, who, when Big Sister in the soap opera suffers from a cold, will send a bottle of aspirin to the radio station or recommend a cure for Big Sister’s cold, in spite of the fact that Big Sister is a fictitious character within a radio soap opera. These particular members of the audience are apparently a little bit askew in their identification of what sort of a communication this is that is coming from their radio. We all make errors of that kind at various times. I’m not sure that I’ve ever met anybody that doesn’t suffer from “schizophrenia P” more or less. We all have some difficulty in deciding sometimes whether a dream was a dream or not, and it would not be very easy for most of us to say how we know that a piece of our own fantasy is fantasy and not experience. The ability to place an experience in time is one of the important cues, and referring it to a sense organ is another. When you look at the mothers and fathers of patients for an answer to this etiological question, you meet with several sorts of answers. First of all there are answers connected with what we may call the intensifying factors. Any disease is made worse or more probable by various circumstances, such as fatigue, cold, the number of days of combat, the presence of other diseases, etc. These seem to have a quantitative effect upon the incidence of almost any pathology. Then there are those factors which I mentioned—the hereditary characteristics and potentialities. To get confused about the logical types, one presumably has to be intelligent enough to know that there is something wrong, and not so intelligent as to be able to see what it is that is wrong. I presume that these characteristics are hereditarily determined. But the nub of the problem, it seems to me, is to identify what real circumstances lead to the specific pathology. I acknowledge that the bacteria are not really by any means the sole determinant of a bacterial disease, and grant also therefore that the occurrence of such traumatic sequences or contexts is not by any means the sole determinant of mental illness. But still it seems to me that the identification of those contexts is the nub of understanding the disease, as identifying the bacteria is essential to understanding a bacterial disease. I have met the mother of the patient whom I mentioned earlier. The family is not badly off. They live in a nice tract house. I went there with the patient, and when we arrived nobody was home. The newspaper boy had tossed the evening paper out in the middle of the lawn, and my patient wanted to get that paper from the middle of that perfect lawn. He came to the edge of the lawn and started to tremble. The house looks like what is called a “model” home—a house which has been furnished by the real estate people in order to sell other houses to the public. Not a house furnished to live in, but rather furnished to look like a furnished house. I discussed his mother with him one day, and suggested that perhaps she was a rather frightened person. He said, “Yes.” I said, “What is she frightened of?” He said, “The appeariential securities.” There is a beautiful, perfectly centered mass of artificial, plastic vegetation on the middle of the mantle. A china pheasant here and a china pheasant there, symmetrically arranged. The wall-to-wall carpet is exactly as it should be. After his mother arrived, I felt a little uncomfortable, intruding in this house. He had not visited there for about five years, but things seemed to be going all right, so I decided to leave him there and to come back when it was time to go back to the hospital. That gave me an hour in the streets with absolutely nothing to do, and I began to think what I would like to do to this setup. What and how could I communicate? I decided that I would like to put into it something that was both beautiful and untidy. In trying to implement that decision, I decided that flowers were the answer, so I bought some gladioluses. I took the gladioluses, and, when I went to get him, I presented them to the mother with a speech that I wanted her to have in her house something that was “both beautiful and untidy.” “Oh!” she said, “Those are not untidy flowers. As each one withers, you can snip it off.” Now, as I see it, what is interesting is not so much the castrative statement in that speech, but the putting me in the position of having apologized when in fact I had not. That is, she took my message and reclassified it. She changed the label which indicated what sort of a message it was, and that is, I believe, what she does all the time. An endless taking of the other person’s message and replying to it as if it were either a statement of weakness on the part of the speaker or an attack on her which should be turned into a weakness on the part of the speaker; and so on. What the patient is up against today—and was up against in childhood—is the false interpretation of his messages. If he says, “The cat is on the table,” she replies with some reply which makes out that his message is not the sort of message that he thought it was when he gave it. His own message identifier is obscured or distorted by her when the message comes back. And her own message identifier she continually contradicts. She laughs when she is saying that which is least funny to her, and so on. Now there is a regular maternal dominance picture in this family, but I am not concerned at the moment to say that this is the necessary form of the trauma. I am only concerned with the purely formal aspects of this traumatic constellation; and I presume the constellation could be made up with father taking certain parts of it, mother taking certain other parts of it, and so forth. I am trying to make only one point: that there is here a probability of trauma which will contain certain formal characteristics. It will propagate a specific syndrome in the patient because the trauma itself has impact upon a certain element in the communicational process. That which is at-tacked is the use of what I have called the “message-identifying signals”—those signals without which the “ego” dare not discriminate fact from fantasy or the literal from the metaphoric. What I tried to do was pinpoint a group of syndromata, namely those syndromata related to an inability to know what sort of a message a message is. At one end of the classification of those, there will be more or less hebephrenic individuals for whom no message is of any particular definite type but who live in a sort of chronic shaggy-dog story. At the other end are those who try to overidentify, to make an overly rigid identification of what sort of a message every message is. This will give a much more paranoid type of picture. Withdrawal is another possibility. Finally, it seems to me that with a hypothesis of this kind, one could look for the determinants in a population which might lead to the occurrence of that sort of constellation. This would seem to me an appropriate matter for epidemiological study. Toward a Theory of Schizophrenia [27] Schizophrenia—its nature, etiology, and the kind of therapy to use for it— remains one of the most puzzling of the mental illnesses. The theory of schizophrenia presented here is based on communications analysis, and specifically on the Theory of Logical Types. From this theory and from observations of schizophrenic patients is derived a description, and the necessary conditions for, a situation called the “double bind”—a situation in which no matter what a person does, he “can’t win.” It is hypothesized that a person caught in the double bind may develop schizophrenic symptoms. How and why the double bind may arise in a family situation is discussed, together with illustrations from clinical and experimental data. This is a report [28] on a research project which has been formulating and testing a broad, systematic view of the nature, etiology, and therapy of schizophrenia. Our research in this field has proceeded by discussion of a varied body of data and ideas, with all of us contributing according to our varied experience in anthropology, communications analysis, psychotherapy, psychiatry, and psychoanalysis. We have now reached common agreement on the broad outlines of a communicational theory of the origin and nature of schizophrenia; this paper is a preliminary report on our continuing research. The Base in Communications Theory Our approach is based on that part of communications theory which Russell has called the Theory of Logical Types. [29] The central thesis of this theory is that there is a discontinuity between a class and its members. The class cannot be a member of itself nor can one of the members be the class, since the term used for the class is of a different level of abstraction—a different Logical Type—from terms used for members. Although in formal logic there is an at-tempt to maintain this discontinuity between a class and its members, we argue that in the psychology of real communications this discontinuity is continually and inevitably breached, [30] and that a priori we must expect a pathology to occur in the human organism when certain formal pat-terns of the breaching occur in the communication between mother and child. We shall argue that this pathology at its extreme will have symptoms whose formal characteristics would lead the pathology to be classified as a schizophrenia. Illustrations of how human beings handle communication involving multiple Logical Types can be derived from the following fields:
The necessary ingredients for a double bind situation, as we see it, are:
In the Eastern religion, Zen Buddhism, the goal is to achieve enlightenment. The Zen master attempts to bring about enlightenment in his pupil in various ways. One of the things he does is to hold a stick over the pupil’s head and say fiercely, “If you say this stick is real, I will strike you with it. If you say this stick is not real, I will strike you with it. If you don’t say anything, I will strike you with it.” We feel that the schizophrenic finds himself continually in the same situation as the pupil, but he achieves something like disorientation rather than enlightenment. The Zen pupil might reach up and take the stick away from the master—who might accept this response, but the schizophrenic has no such choice since with him there is no not caring about the relationship, and his mother’s aims and awareness are not like the master’s. We hypothesize that there will be a breakdown in any individual’s ability to discriminate between Logical Types whenever a double bind situation occurs. The general characteristics of this situation are the following:
We have suggested that this is the sort of situation which occurs between the preschizophrenic and his mother, but it also occurs in normal relationships. When a person is caught in a double bind situation, he will respond defensively in a manner similar to the schizophrenic. An individual will take a metaphorical statement literally when he is in a situation where he must respond, where he is faced with contradictory messages, and when he is unable to comment on the contradictions. For example, one day an employee went home during office hours. A fellow employee called him at his home, and said lightly, “Well, how did you get there?” The employee replied, “By automobile.” He responded literally because he was faced with a message which asked him what he was doing at home when he should have been at the office, but which denied that this question was being asked by the way it was phrased. (Since the speaker felt it wasn’t really his business, he spoke metaphorically.) The relationship was intense enough so that the victim was in doubt how the information would be used, and he therefore responded literally. This is characteristic of anyone who feels “on the spot,” as demonstrated by the careful literal replies of a witness on the stand in a court trial. The schizophrenic feels so terribly on the spot at all times that he habitually responds with a defensive insistence on the literal level when it is quite inappropriate, e.g., when someone is joking. Schizophrenics also confuse the literal and metaphoric in their own utterance when they feel themselves caught in a double bind. For example, a patient may wish to criticize his therapist for being late for an appointment, but he may be unsure what sort of a message that act of being late was—particularly if the therapist has anticipated the patient’s reaction and apologized for the event. The patient cannot say, “Why were you late? Is it because you don’t want to see me today?” This would be an accusation, and so he shifts to a metaphorical statement. He may then say, “I knew a fellow once who missed a boat, his name was Sam and the boat almost sunk,… etc.,” Thus he develops a metaphorical story and the therapist may or may not discover in it a comment on his being late. The convenient thing about a metaphor is that it leaves it up to the therapist (or mother) to see an accusation in the statement if he chooses, or to ignore it if he chooses. Should the therapist accept the accusation in the metaphor, then the patient can accept the statement he has made about Sam as metaphorical. If the therapist points out that this doesn’t sound like a true statement about Sam, as a way of avoiding the accusation in the story, the patient can argue that there really was a man named Sam. As an answer to the double bind situation, a shift to a metaphorical statement brings safety. However, it also prevents the patient from making the accusation he wants to make. But instead of getting over his accusation by indicating that this is a metaphor, the schizophrenic patient seems to try to get over the fact that it is a metaphor by making it more fantastic. If the therapist should ignore the accusation in the story about Sam, the schizophrenic may then tell a story about going to Mars in a rocket ship as a way of putting over his accusation. The indication that it is a metaphorical statement lies in the fantastic aspect of the metaphor, not in the signals which usually accompany metaphors to tell the listener that a metaphor is being used. It is not only safer for the victim of a double bind to shift to a metaphorical order of message, but in an impossible situation it is better to shift and become somebody else, or shift and insist that he is somewhere else. Then the double bind cannot work on the victim, because it isn’t he and besides he is in a different place. In other words, the statements which show that a patient is disoriented can be interpreted as ways of defending himself against the situation he is in. The pathology enters when the victim himself either does not know that his responses are metaphorical or cannot say so. To recognize that he was speaking metaphorically he would need to be aware that he was defending himself and therefore was afraid of the other person. To him such an awareness would be an indictment of the other person and therefore provoke disaster. If an individual has spent his life in the kind of double bind relationship described here, his way of relating to people after a psychotic break would have a systematic pat-tern. First, he would not share with normal people those signals which accompany messages to indicate what a person means. His metacommunicative system—the communications about communication—would have broken down, and he would not know what kind of message a message was. If a person said to him, “What would you like to do today?” he would be unable to judge accurately by the context or by the tone of voice or gesture whether he was being condemned for what he did yesterday, or being offered a sexual invitation, or just what was meant. Given this in-ability to judge accurately what a person really means and an excessive concern with what is really meant, an individual might defend himself by choosing one or more of several alternatives. He might, for example, assume that behind every statement there is a concealed meaning which is detrimental to his welfare. He would then be excessively concerned with hidden meanings and determined to demonstrate that he could not be deceived—as he had been all his life. If he chooses this alternative, he will be continually searching for meanings behind what people say and behind chance occurrences in the environment, and he will be characteristically suspicious and defiant. He might choose another alternative, and tend to accept literally everything people say to him; when their tone or gesture or context contradicted what they said, he might establish a pattern of laughing off these metacommunicative signals. He would give up trying to discriminate between levels of message and treat all messages as unimportant or to be laughed at. If he didn’t become suspicious of metacommunicative messages or attempt to laugh them off, he might choose to try to ignore them. Then he would find it necessary to see and hear less and less of what went on around him, and do his utmost to avoid provoking a response in his environment. He would try to detach his interest from the external world and concentrate on his own internal processes and, therefore, give the appearance of being a withdrawn, perhaps mute, individual. This is another way of saying that if an individual doesn’t know what sort of message a message is, he may defend himself in ways which have been described as paranoid, hebephrenic, or catatonic. These three alternatives are not the only ones. The point is that he cannot choose the one alternative which would help him to discover what people mean; he cannot, without considerable help, discuss the messages of others. Without being able to do that, the human being is like any self-correcting system which has lost accept the accusation in the metaphor, then the patient can accept the statement he has made about Sam as metaphorical. If the therapist points out that this doesn’t sound like a true statement about Sam, as a way of avoiding the accusation in the story, the patient can argue that there really was a man named Sam. As an answer to the double bind situation, a shift to a metaphorical statement brings safety. However, it also prevents the patient from making the accusation he wants to make. But instead of getting over his accusation by indicating that this is a metaphor, the schizophrenic patient seems to try to get over the fact that it is a metaphor by making it more fantastic. If the therapist should ignore the accusation in the story about Sam, the schizophrenic may then tell a story about going to Mars in a rocket ship as a way of putting over his accusation. The indication that it is a metaphorical statement lies in the fantastic aspect of the metaphor, not in the signals which usually accompany metaphors to tell the listener that a metaphor is being used. It is not only safer for the victim of a double bind to shift to a metaphorical order of message, but in an impossible situation it is better to shift and become somebody else, or shift and insist that he is somewhere else. Then the double bind cannot work on the victim, because it isn’t he and besides he is in a different place. In other words, the statements which show that a patient is disoriented can be interpreted as ways of defending himself against the situation he is in. The pathology enters when the victim himself either does not know that his responses are metaphorical or cannot say so. To recognize that he was speaking metaphorically he would need to be aware that he was defending himself and therefore was afraid of the other person. To him such an awareness would be an indictment of the other person and therefore provoke disaster. If an individual has spent his life in the kind of double bind relationship described here, his way of relating to people after a psychotic break would have a systematic pat-tern. First, he would not share with normal people those signals which accompany messages to indicate what a person means. His metacommunicative system—the communications about communication—would have broken down, and he would not know what kind of message a message was. If a person said to him, “What would you like to do today?” he would be unable to judge accurately by the context or by the tone of voice or gesture whether he was being condemned for what he did yesterday, or being offered a sexual invitation, or just what was meant. Given this in-ability to judge accurately what a person really means and an excessive concern with what is really meant, an individual might defend himself by choosing one or more of several alternatives. He might, for example, assume that behind every statement there is a concealed meaning which is detrimental to his welfare. He would then be excessively concerned with hidden meanings and determined to demonstrate that he could not be deceived—as he had been all his life. If he chooses this alternative, he will be continually searching for meanings behind what people say and behind chance occurrences in the environment, and he will be characteristically suspicious and defiant. He might choose another alternative, and tend to accept literally everything people say to him; when their tone or gesture or context contradicted what they said, he might establish a pattern of laughing off these metacommunicative signals. He would give up trying to discriminate between levels of message and treat all messages as unimportant or to be laughed at. If he didn’t become suspicious of metacommunicative messages or attempt to laugh them off, he might choose to try to ignore them. Then he would find it necessary to see and hear less and less of what went on around him, and do his utmost to avoid provoking a response in his environment. He would try to detach his interest from the external world and concentrate on his own internal processes and, therefore, give the appearance of being a withdrawn, perhaps mute, individual. This is another way of saying that if an individual doesn’t know what sort of message a message is, he may defend himself in ways which have been described as paranoid, hebephrenic, or catatonic. These three alternatives are not the only ones. The point is that he cannot choose the one alternative which would help him to discover what people mean; he cannot, without considerable help, discuss the messages of others. Without being able to do that, the human being is like any self-correcting system which has lost its governor; it spirals into never-ending, but always systematic, distortions. A Description of the Family Situation The theoretical possibility of double bind situations stimulated us to look for such communication sequences in the schizophrenic patient and in his family situation. Toward this end we have studied the written and verbal reports of psychotherapists who have treated such patients intensively; we have studied tape recordings of psychotherapeutic inter-views, both of our own patients and others; we have inter-viewed and taped parents of schizophrenics; we have had two mothers and one father participate in intensive psychotherapy; and we have interviewed and taped parents and patients seen conjointly. On the basis of these data we have developed a hypothesis about the family situation which ultimately leads to an individual suffering from schizophrenia. This hypothesis has not been statistically tested; it selects and emphasizes a rather simple set of interactional phenomena and does not attempt to describe comprehensively the extraordinary complexity of a family relationship. We hypothesize that the family situation of the schizophrenic has the following general characteristics:
Since this is a formal description we are not specifically concerned with why the mother feels this way about the child, but we suggest that she could feel this way for various reasons. It may be that merely having a child arouses anxiety about herself and her relationships to her own family; or it may be important to her that the child is a boy or a girl, or that the child was born on the anniversary of one of her own siblings, [37] or the child may be in the same sibling position in the family that she was, or the child may be special to her for other reasons related to her own emotional problems. Given a situation with these characteristics, we hypothesize that the mother of a schizophrenic will be simultaneously expressing at least two orders of message. (For simplicity in this presentation we shall confine ourselves to two orders.) These orders of message can be roughly characterized as (a) hostile or withdrawing behavior which is aroused when-ever the child approaches her, and (b) simulated loving or approaching behavior which is aroused when the child responds to her hostile and withdrawing behavior, as a way of denying that she is withdrawing. Her problem is to control her anxiety by controlling the closeness and distance between herself and her child. To put this another way, if the mother begins to feel affectionate and close to her child, she begins to feel endangered and must withdraw from him; but she cannot accept this hostile act and to deny it must simulate affection and closeness with her child. The important point is that her loving behavior is then a comment on (since it is compensatory for) her hostile behavior and consequently it is of a different order of message than the hostile behavior—it is a message about a sequence of messages. Yet by its nature it denies the existence of those messages which it is about, i.e., the hostile withdrawal. The mother uses the child’s responses to affirm that her behavior is loving, and since the loving behavior is simulated, the child is placed in a position where he must not accurately interpret her communication if he is to maintain his relationship with her. In other words, he must not discriminate accurately between orders of message, in this case the difference between the expression of simulated feelings (one Logical Type) and real feelings (another Logical Type). As a result the child must systematically distort his perception of metacommunicative signals. For ex-ample, if mother begins to feel hostile (or affectionate) to-ward her child and also feels compelled to withdraw from him, she might say, “Go to bed, you’re very tired and I want you to get your sleep.” This overtly loving statement is intended to deny a feeling which could be. verbalized as “Get out of my sight because I’m sick of you.” If the child correctly discriminates her metacommunicative signals, he would have to face the fact that she both doesn’t want him and is deceiving him by her loving behavior. He would be “punished” for learning to discriminate orders of messages accurately. He therefore would tend to accept the idea that he is tired rather than recognize his mother’s deception. This means that he must deceive himself about his own internal state in order to support mother in her deception. To survive with her he must falsely discriminate his own internal messages as well as falsely discriminate the messages of others. The problem is compounded for the child because the mother is “benevolently” defining for him how he feels; she is expressing overt maternal concern over the fact that he is tired. To put it another way, the mother is controlling the child’s definitions of his own messages, as well as the definition of his responses to her (e.g., by saying, “You don’t really mean to say that,” if he should criticize her) by insisting that she is not concerned about herself but only about him. Consequently, the easiest path for the child is to accept mother’s simulated loving behavior as real, and his desires to interpret what is going on are undermined. Yet the result is that the mother is withdrawing from him and defining this withdrawal as the way a loving relationship should be. However, accepting mother’s simulated loving behavior as real also is no solution for the child. Should he make this false discrimination, he would approach her; this move to-ward closeness would provoke in her feelings of fear and helplessness, and she would be compelled to withdraw. But if he then withdrew from her, she would take his withdrawal as a statement that she was not a loving mother and would either punish him for withdrawing or approach him to bring him closer. If he then approached, she would respond by putting him at a distance. The child is punished for discriminating accurately what she is expressing, and he is punished for discriminating inaccurately—he is caught in a double bind. The child might try various means of escaping from this situation. He might, for example, try to lean on his father or some other member of the family. However, from our preliminary observations we think it is likely that the fathers of schizophrenics are not substantial enough to lean on. They are also in the awkward position where if they agreed with the child about the nature of mother’s deceptions, they would need to recognize the nature of their own relation-ships to the mother, which they could not do and remain attached to her in the modus operandi they have worked out. The need of the mother to be wanted and loved also prevents the child from gaining support from some other person in the environment, a teacher, for example. A mother with these characteristics would feel threatened by any other attachment of the child and would break it up and bring the child back closer to her with consequent anxiety when the child became dependent on her. The only way the child can really escape from the situation is to comment on the contradictory position his mother has put him in. However, if he did so, the mother would take this as an accusation that she is unloving and both punish him and insist that his perception of the situation is distorted. By preventing the child from talking about the situation, the mother forbids him using the metacommunicative level—the level we use to correct our perception of communicative behavior. The ability to communicate about communication, to comment upon the meaningful actions of oneself and others, is essential for successful social inter-course. In any normal relationship there is a constant inter-change of metacommunicative messages such as “What do you mean?” or “Why did you do that?” or “Are you kidding me?” and so on. To discriminate accurately what people are really expressing, we must be able to comment directly or indirectly on that expression. This metacommunicative level the schizophrenic seems unable to use successfully. [38] Given these characteristics of the mother, it is apparent why. If she is denying one order of message, then any statement about her statements endangers her and she must forbid it. Therefore, the child grows up unskilled in his ability to communicate about communication and, as a result, unskilled in determining what people really mean and unskilled in expressing what he really means, which is essential for normal relationships. In summary, then, we suggest that the double bind nature of the family situation of a schizophrenic results in placing the child in a position where, if he responds to his mother’s simulated affection, her anxiety will be aroused and she will punish him (or insist, to protect herself, that his overtures are simulated, thus confusing him about the nature of his own messages) to defend herself from closeness with him. Thus the child is blocked off from intimate and secure associations with his mother. However, if he does not make overtures of affection, she will feel that this means she is not a loving mother and her anxiety will be aroused. Therefore, she will either punish him for with-drawing or make overtures toward the child to insist that he demonstrate that he loves her. If he then responds and shows her affection, she will not only feel endangered again, but she may resent the fact that she had to force him to respond. In either case in a relationship, the most important in his life and the model for all others, he is punished if he indicates love and affection and punished if he does not; and his escape routes from the situation, such as gaining support from others, are cut off. This is the basic nature of the double bind relationship between mother and child. This description has not depicted, of course, the more complicated interlocking gestalt that is the “family” of which the “mother” is one important part. [39] Illustrations from Clinical Data An analysis of an incident occurring between a schizophrenic patient and his mother illustrates the double bind situation. A young man who had fairly well recovered from an acute schizophrenic episode was visited in the hospital by his mother. He was glad to see her and impulsively put his arm around her shoulders, whereupon she stiffened. He withdrew his arm and she asked, “Don’t you love me any more?” He then blushed, and she said, “Dear, you must not be so easily embarrassed and afraid of your feelings.” The patient was able to stay with her only a few minutes more and following her departure he assaulted an aide and was put in the tubs. Obviously, this result could have been avoided if the young man had been able to say, “Mother, it is obvious that you become uncomfortable when I put my arm around you, and that you have difficulty accepting a gesture of affection from me.” However, the schizophrenic patient doesn’t have this possibility open to him. His intense dependency and training prevents him from commenting upon his mother’s communicative behavior, though she comments on his and forces him to accept and to attempt to deal with the complicated sequence. The complications for the patient include the following:
The impossible dilemma thus becomes: “If I am to keep my tie to mother, I must not show her that I love her, but if I do not show her that I love her, then I will lose her.” The importance to the mother of her special method of control is strikingly illustrated by the interfamily situation of a young woman schizophrenic who greeted the therapist on their first meeting with the remark, “Mother had to get married and now I’m here.” This statement meant to the therapist that:
Actually, all these suppositions subsequently proved to be factually correct and were corroborated by the mother during an abortive attempt at psychotherapy. The flavor of the mother’s communications to the patient seemed essentially this: “I am lovable, loving, and satisfied with myself. You are lovable when you are like me and when you do what I say.” At the same time the mother indicated to the daughter both by words and behavior: “You are physically delicate, unintelligent, and different from me (`not normal’). You need me and me alone because of these handicaps, and I will take care of you and love you.” Thus the patient’s life was a series of beginnings, of attempts at experience, which would result in failure and withdrawal back to the maternal hearth and bosom because of the collusion between her and her mother. It was noted in collaborative therapy that certain areas important to the mother’s self-esteem were especially conflictual situations for the patient. For example, the mother needed the fiction that she was close to her family and that a deep love existed between her and her own mother. By analogy the relationship to the grandmother served as the prototype for the mother’s relationship to her own daughter. On one occasion when the daughter was seven or eight years old, the grandmother in a rage threw a knife which barely missed the little girl. The mother said nothing to the grandmother but hurried the little girl from the room with the words, “Grandmommy really loves you.” It is significant that the grandmother took the attitude to-ward the patient that she was not well enough controlled, and she used to chide her daughter for being too easy on the child. The grandmother was living in the house during one of the patient’s psychotic episodes, and the girl took great delight in throwing various objects at the mother and grandmother while they cowered in fear. Mother felt herself very attractive as a girl, and she felt that her daughter resembled her rather closely, although by damning with faint praise, it was obvious that she felt the daughter definitely ran second. One of the daughter’s first acts during a psychotic period was to announce to her mother that she was going to cut off all her hair. She proceeded to do this while the mother pleaded with her to stop. Subsequently the mother would show a picture of herself as a girl and explain to people how the patient would look if she only had her beautiful hair. The mother, apparently without awareness of the significance of what she was doing, would equate the daughter’s illness with not being very bright and with some sort of organic brain difficulty. She would invariably contrast this with her own intelligence as demonstrated by her own scholastic record. She treated her daughter with a completely patronizing and placating manner which was insincere. For example, in the psychiatrist’s presence she promised her daughter that she would not allow her to have further shock treatments, and as soon as the girl was out of the room she asked the doctor if he didn’t feel she should be hospitalized and given electric shock treatments. One clue to this deceptive behavior arose during the mother’s therapy. Although the daughter had had three previous hospitalizations, the mother had never mentioned to the doctors that she herself had had a psychotic episode when she discovered that she was pregnant. The family whisked her away to a small sanitarium in a nearby town, and she was, according to her own statement, strapped to a bed for six weeks. Her family did not visit her during this time, and no one except her parents and her sister knew that she was hospitalized. There were two times during therapy when the mother showed intense emotion. One was in relating her own psychotic experience; the other was on the occasion of her last visit when she accused the therapist of trying to drive her crazy by forcing her to choose between her daughter and her husband. Against medical advice, she took her daughter out of therapy. The father was as involved in the homeostatic aspects of the intrafamily situation as the mother. For example, he stated that he had to quit his position as an important attorney in order to bring his daughter to an area where competent psychiatric help was available. Subsequently, acting on cues from the patient (e.g., she frequently referred to a character named “Nervous Ned”), the therapist was able to elicit from him that he had hated his job and for years had been trying to “get out from under.” However, the daughter was made to feel that the move was initiated for her. On the basis of our examination of the clinical data, we have been impressed by a number of observations including:
(3) According to our theory, the communication situation described is essential to the mother’s security, and by inference to the family homeostasis. If this be so, then when psychotherapy of the patient helps him become less vulnerable to mother’s attempts at control, anxiety will be produced in the mother. Similarly, if the therapist interprets to the mother the dynamics of the situation she is setting up with the patient, this should produce an anxiety response in her. Our impression is that when there is a perduring contact between patient and family (especially when the patient lives at home during psychotherapy), this leads to a disturbance (often severe) in the mother and sometimes in both mother and father and other siblings. [40] Current Position and Future Prospects Many writers have treated schizophrenia in terms of the most extreme contrast with any other form of human thinking and behavior. While it is an isolable phenomenon, so much emphasis on the differences from the normal—rather like the fearful physical segregation of psychotics—does not help in understanding the problems. In our approach we assume that schizophrenia involves general principles which are important in all communication and therefore many in-formative similarities can be found in “normal” communication situations. We have been particularly interested in various sorts of communication which involve both emotional significance and the necessity of discriminating between orders of message. Such situations include play, humor, ritual, poetry, and fiction. Play, especially among animals, we have studied at some length. [41] It is a situation which strikingly illustrates the occurrence of metamessages whose correct discrimination is vital to the cooperation of the individuals involved; for ex-ample, false discrimination could easily lead to combat. Rather closely related to play is humor, a continuing subject of our - research. It involves sudden shifts in Logical Types as well as discrimination of those shifts. Ritual is a field in which unusually real or literal ascriptions of Logical Type are made and defended as vigorously as the schizophrenic defends the “reality” of his delusions. Poetry exemplifies the communicative power of metaphor—even very unusual metaphor—when labeled as such by various signs, as contrasted to the obscurity of unlabeled schizophrenic metaphor. The entire field of fictional communication, defined as the narration or depiction of a series of events with more or less of a label of actuality, is most relevant to the investigation of schizophrenia. We are not so much concerned with the content interpretation of fiction—although analysis of oral and destructive themes is illuminating to the student of schizophrenia—as with the formal problems involved in simultaneous existence of multiple levels of message in the fictional presentation of “reality.” The drama is especially interesting in this respect, with both performers and spectators responding to messages about both the actual and the theatrical reality. We are giving extensive attention to hypnosis. A great array of phenomena that occur as schizophrenic symptoms—hallucinations, delusions, alterations of personality, amnesias, and so on—can be produced temporarily in normal subjects with hypnosis. These need not be directly suggested as specific phenomena, but can be the “spontaneous” result of an arranged communication sequence. For example, Erickson [42] will produce a hallucination by first inducing catalepsy in a subject’s hand and then saying, “There is no conceivable way in which your hand can move, yet when I give the signal, it must move.” That is, he tells the subject his hand will remain in place, yet it will move, and in no way the subject can consciously conceive. When Erickson gives the signal, the subject hallucinates the hand moved, or hallucinates himself in a different place and therefore the hand was moved. This use of hallucination to resolve a problem posed by contradictory commands which cannot be discussed seems to us to illustrate the solution of a double bind situation via a shift in Logical Types. Hypnotic responses to direct suggestions or statements also commonly involve shifts in type, as in accepting the words “Here’s a glass of water” or “You feel tired” as external or internal reality, or in literal response to metaphorical statements, much like schizophrenics. We hope that further study of hypnotic induction, phenomena, and waking will, in this controllable situation, help sharpen our view of the essential communicational sequences which produce phenomena like those of schizophrenia. Another Erickson experiment seems to isolate a double bind communicational sequence without the specific use of hypnosis. Erickson arranged a seminar so as to have a young chain smoker sit next to him and to be without cigarettes; other participants were briefed on what to do. All was ordered so that Erickson repeatedly turned to offer the young man a cigarette, but was always interrupted by a question from someone so that he turned away, “inadvertently” withdrawing the cigarettes from the young man’s reach. Later another participant asked this young man if he had received the cigarette from Dr. Erickson. He re-plied, “What cigarette?”, showed clearly that he had forgot-ten the whole sequence, and even refused a cigarette offered by another member, saying that he was too interested in the seminar discussion to smoke. This young man seems to us to be in an experimental situation paralleling the schizophrenic’s double bind situation with mother: an important relationship, contradictory messages (here of giving and taking away), and comment blocked—because there was a seminar going on, and anyway it was all “inadvertent.” And note the similar outcome: amnesia for the double bind sequence and reversal from “He doesn’t give” to “I don’t want.” Although we have been led into these collateral areas, our main field of observation has been schizophrenia itself. All of us have worked directly with schizophrenic patients and much of this case material has been recorded on tape for detailed study. In addition, we are recording interviews held jointly with patients and their families, and we are taking sound motion pictures of mothers and disturbed, presumably pre-schizophrenic, children. Our hope is that these operations will provide a clearly evident record of the continuing, repetitive double binding which we hypothesize goes on steadily from infantile beginnings in the family situation of individuals who become schizophrenic. This basic family situation, and the overtly communicational characteristics of schizophrenia, have been the major focus of this paper. However, we expect our concepts and some of these data will also be useful in future work on other problems of schizophrenia, such as the variety of other symptoms, the character of the “adjusted state” before schizophrenia becomes manifest, and the nature and circumstances of the psychotic break. Therapeutic Implications of this Hypothesis Psychotherapy itself is a context of multilevel communication, with exploration of the ambiguous lines between the literal and metaphoric, or reality and fantasy, and indeed, various forms of play, drama, and hypnosis have been used extensively in therapy. We have been interested in therapy, and in addition to our own data we have been collecting and examining recordings, verbatim transcripts, and personal accounts of therapy from other therapists. In this we prefer exact records since we believe that how a schizophrenic talks depends greatly, though often subtly, on how another person talks to him; it is most difficult to estimate what was really occurring in a therapeutic interview if one has only a description of it, especially if the description is already in theoretical terms. Except for a few general remarks and some speculation, however, we are not yet prepared to comment on the relation of the double bind to psychotherapy. At present we can only note:
An incident from the experience of a gifted psychotherapist illustrates the intuitive understanding of a double bind communicational sequence. Dr. Frieda Fromm-Reichmann [43] was treating a young woman who from the age of seven had built a highly complex religion of her own replete with powerful gods. She was very schizophrenic and quite hesitant about entering into a therapeutic situation. At the be-ginning of the treatment she said, “God R says I shouldn’t talk with you.” Dr. Fromm-Reichmann replied, “Look, let’s get something into the record. To me God R doesn’t exist, and that whole world of yours doesn’t exist. To you it does, and far be it from me to think that I can take that away from you, I have no idea what it means. So I’m willing to talk with you in terms of that world, if only you know I do it so that we have an understanding that it doesn’t exist for me. Now go to God R and tell him that we have to talk and he should give you permission. Also you must tell him that I am a doctor and that you have lived with him in his kingdom now from seven to sixteen—that’s nine years —and he hasn’t helped you. So now he must permit me to try and see whether you and I can do that job. Tell him that I am a doctor and this is what I want to try.” The therapist has her patient in a “therapeutic double bind.” If the patient is rendered doubtful about her belief in her god, then she is agreeing with Dr. Fromm- Reichmann, and is admitting her attachment to therapy. If she insists that God R is real, then she must tell him that Dr. Fromm-Reichmann is “more powerful” than he— again admitting her involvement with the therapist. The difference between the therapeutic bind and the original double bind situation is in part the fact that the therapist is not involved in a life and death struggle himself. He can therefore set up relatively benevolent binds and gradually aid the patient in his emancipation from them. Many of the uniquely appropriate therapeutic gambits arranged by therapists seem to be intuitive. We share the goal of most psychotherapists who strive toward the day when such strokes of genius will be well enough understood to be systematic and commonplace. J. Haley, “Paradoxes in Play, Fantasy, and Psychotherapy,” Psychiatric Research Reports, 1955, 2: 52-8. J. Ruesch and G. Bateson, Communication: The Social Matrix of Psychiatry, New York, Norton, 1951. The Group Dynamics of Schizophrenia [44] First, I intend to attach very specific meaning to the title of this paper. An essential notion attached to the word “group” as I shall use it is the idea of relatedness between members. Our concern is not with the sort of phenomena which occur in experimentally formed groups of graduate students who have no previously determined habits of communication—no habitual differentiations of role. The group to which I mostly refer is the family; in general, those families in which the parents maintain an adjustment to the world around them without being recognized as grossly deviant, while one or more of their offspring differ conspicuously from the normal population in the frequency and obvious nature of their responses. I shall also be thinking of other groups analogous to these, i.e., ward organizations, which work in such a way as to promote schizophrenic or schizophrenoid behavior in some of the members. The word “dynamics” is loosely and conventionally used for all studies of personal interaction and especially when they stress change or learning exhibited by the subjects. De-spite our following its conventional use, this word is a misnomer. It evokes analogies with physics which are totally false. “Dynamics” is principally a language devised by physicists and mathematicians for the description of certain events. In this strict sense, the impact of one billiard ball upon an-other is subject matter for dynamics, but it would be an error of language to say that billiard balls “behave.” Dynamics appropriately describe those events whose descriptions can be checked by asking whether they contravene the First Law of Thermodynamics, the Law of the Conservation of Energy. When one billiard ball strikes another, the motion of the second is energized by the impact of the first, and such transferences of energy are the central subject matter of dynamics. We, however, are not concerned with event sequences which have this characteristic. If I kick a stone, the movement of the stone is energized by the act, but if I kick a dog, the behavior of the dog may indeed be partly conservative—he may travel along a Newtonian trajectory if kicked hard enough, but this is mere physics. What is important is that he may exhibit responses which are energized not by the kick but by his metabolism; he may turn and bite. This, I think, is what people mean by magic. The realm of phenomena in which we are interested is always characterized by the fact that “ideas” may influence events. To the physicist, this is a grossly magical hypothesis. It is one which cannot be tested by asking questions about the conservation of energy. All this, however, has been better and more rigorously said by Bertalanffy, which makes it easier for me to further explore this realm of phenomena in which communication occurs. We shall settle for the conventional term “dynamics” provided it is clearly understood that we are not talking about dynamics in the physical sense. Robert Louis Stevenson [45] in “The Poor Thing” has achieved perhaps the most vivid characterization of this magical realm: “In my thought one thing is as good as another in this world; and a shoe of a horse will do.” The word “yes” or a whole performance of Hamlet, or an injection of epinephrine in the right place on the surface of the brain may be interchangeable objects. Any one of them may, ac-cording to the conventions of communication established at that moment, be an affirmative (or a negative) answer to any question. In the famous message, “One if by land; two if by sea,” the objects actually used were lamps, but from the point of view of communications theory, they could have been anything from aardvarks to zygomatic arches. It might well be sufficiently confusing to be told that, according to the conventions of communication in use at the moment, anything can stand for anything else. But this realm of magic is not that simple. Not only can the shoe of a horse stand for anything else according to the conventions of communication, it can also and simultaneously be a signal which will alter the conventions of communication. My fingers crossed behind my back may alter the whole tone and implication of everything. I recall a schizophrenic patient who, like many other schizophrenics, had difficulty with the first person pronoun; in particular, he did not like to sign his name. He had a number of aliases, alternative named aspects of self. The ward organization, of which he was a part, required that he sign his name to obtain a pass, and for one or two weekends he did not receive a pass because he insisted on signing one of his aliases. One day he remarked that he was going out the next weekend. I said, “Oh, did you sign?” He said, “Yes,” with an odd grin. His real name, we will say, was Edward W. Jones. What he had actually signed was “W. Edward Jones.” The ward officials did not notice the difference. It appeared to them that they had won a battle and had succeeded in forcing him to act sanely. But to himself the message was, “He (the real me) did not sign.” He had won the battle. It was as if his fingers were crossed behind his back. All communication has this characteristic—it can be magically modified by accompanying communication. In this conference, we have been discussing various ways of interacting with patients, describing what we do and what our strategy seems to us to be. It would have been more difficult to discuss our actions from the patients’ point of view. How do we qualify our communications to the patients, so that the experience which they receive will be therapeutic? Appleby, for example, described a set of procedures on his ward, and if I were a schizophrenic listening to him, I would have been tempted to say, “It all sounds like occupational therapy to me.” He tells us very convincingly and with figures that his program is successful, and in documenting his success he is no doubt telling the truth. If this is so, then his description of the program must necessarily be incomplete. The experiences which the program provides for the patients must be something a little more alive than the dry bones of the program which he has described. The whole series of therapeutic procedures must have been qualified, possibly with enthusiasm or with humor, with some set of signals which altered the mathematical sign—plus or minus—of what was being done. Appleby has told us only about the shoe of the horse, not about the multitude of realities which determined for what that horseshoe stood. It is as if he had related that a given musical composition was set in the key of C major, and asked us to believe that this skeletal statement was a sufficient description to enable us to understand why this particular composition altered the mood of the listener in a particular way. What is omitted in all such descriptions is the enormous complexity of modulation of communication. It is this modulation which is music. Let me shift from a musical to a wide biological analogy in order to examine further this magical realm of communication. All organisms are partially determined by genetics, i.e., by complex constellations of messages carried principally in the chromosomes. We are products of a communicational process, modified and qualified in various ways by environmental impact. It follows, therefore, that the differences between related organisms, say, a crab and a lobster, or between a tall pea and a short pea, must always be the sort of differences that can be created by changes and modulations in a constellation of messages. Sometimes these changes in the message system will be relatively concrete—a shift from “yes” to “no” in the answer to some question governing a relatively superficial detail of the anatomy. The total picture of the animal may be altered by as little as one spot in the whole halftone block, or the change may be one which modifies or modulates the whole system of genetic messages, so that every message in the system takes on a different look while retaining its former relation-ship to all neighboring messages. It is, I believe, this stability of the relationship between messages under the impact of the change in one part of the constellation that provides a basis for the French aphorism “Plus get change, plus c’est la même chose.” It is a recognized fact that the skulls of the various anthropoids can be drawn upon diversely skewed coordinates ‘to demonstrate the fundamental similarity of relations and the systematic nature of the transformation from one species to another. [46] My father was a geneticist, and he used to say, “It’s all vibrations,” [47] and to illustrate this he would point out that the striping of the common zebra is an octave higher than that of Grevy’s zebra. While it is true that in this particular case the “frequency” is doubled, I don’t think that it is entirely a matter of vibrations as he endeavored to ex-plain it. Rather, he was trying to say that it is all a matter of the sort of modifications which could be expected among systems whose determinants are not a matter of physics in the crude sense, but a matter of messages and modulated systems of messages. It is worth noting, too, that perhaps organic forms are beautiful to us and the systematic biologist can find aesthetic satisfaction in the differences between related organisms simply because the differences are due to modulations of communication, while we ourselves are both organisms who communicate and whose forms are determined by constellations of genetic messages. This is not the place, however, for such a revision of aesthetic theory. An expert in the theory of mathematical groups could make a major contribution in this field. All messages and parts of messages are like phrases or segments of equations which a mathematician puts in brackets. Outside the brackets there may always be a qualifier or multiplier which will alter the whole tenor of the phrase. More-over, these qualifiers can always be added, even years later. They do not have to precede the phrase inside the brackets. Otherwise, there could be no psychotherapy. The patient would be entitled and even compelled to argue, “My mother slapped me down in such and such ways, and, therefore, I am now sick; and because those traumata occurred in the past they cannot be altered, and I, therefore, cannot get well.” In the realm of communication, the events of the past constitute a chain of old horseshoes so that the meaning of that chain can be changed and is continually being changed. What exists today are only messages about the past which we call memories, and these messages can al-ways be framed and modulated from moment to moment. Up to this point the realm of communication appears to be more and more complex, more flexible, and less amenable to analysis. Now the introduction of the group concept—the consideration of many persons—suddenly simplifies this confused realm of slipping and sliding meanings. If we shake up a number of irregular stones in a bag, or subject them to an almost random beating by the waves on the seashore, even at the crudely physical level, there will be a gradual simplification of the system—the stones will resemble each other. In the end, they will all become spherical, but in practice we usually encounter them as partly rounded pebbles. Certain forms of homogenization result from multiple impact even at the crude physical level, and when the impacting entities are organisms capable of complex learning and communication, the total system operates rapidly to-ward either uniformity or toward systematic differentiation—an increase of simplicity— which we call organization. If there are differences between the impacting entities, these differences will undergo change, either in the direction of reducing the difference, or in the direction of achieving a mutual fitting or complementarity. Among groups of people, whether the direction of change is toward homogeneity or toward complementarity, the achievement is a sharing of premises regarding the meaning and appropriateness of messages and other acts in the context of the relationship. I shall not go into the complex problems of learning involved in this process but shall proceed to the problem of schizophrenia. An individual, i.e., the identified patient, exists within a family setting, but when we view him singularly, certain peculiarities of his communicational habits are noted. These peculiarities may be partly determined by genetics or physiological accident, but it is still reasonable to question the function of these peculiarities within the communicational system of which they are a part the family. A number of living creatures have been, in a sense, shaken up together and one of them has come out apparently different from the rest; we have to ask not only about differences in the material of which this particular individual may be made, but also how his particular characteristics were developed in this family system. Can the peculiarities of the identified patient be seen as appropriate, i.e., as either homogeneous with, or complementary to, the characteristics of the other members of the group? We do not doubt that a large part of schizophrenic. symptomatology is, in some sense, learned or determined by experience, but an organism can learn only that which it is taught by the circumstances of living and the experiences of exchanging messages with those around him. He cannot learn at random, but only to be like or unlike those around him. We have, therefore, the necessary task of looking at the experiential setting of schizophrenia. We shall outline briefly what we have been calling the double bind hypothesis, which has been more fully described elsewhere. [48] This hypothesis contains two parts; a formal description of the communicational habits of the schizophrenic, and a formal description of the sequences of experience which would understandably train the individual in his peculiar distortions of communication. Empirically we find that one description of the symptoms is, on the whole, satisfactory, and that the families of schizophrenics are characterized by the behavioral sequences which are predicted by the hypothesis. Typically, the schizophrenic will eliminate from his messages everything that refers explicitly or implicitly to the relationship between himself and the person he is addressing. Schizophrenics commonly avoid the first and second person pronouns. They avoid telling you what sort of a message they are transmitting—whether it be literal or metaphoric, ironic or direct and they are likely to have difficulty with all messages and meaningful acts which imply intimate contact between the self and some other. To receive food may be almost impossible, but so also may be the repudiation of food. When leaving for the A.P.A. meetings in Honolulu, I told my patient that I would be away and where I was going. He looked out the window and said, “That plane flies awfully slowly.” He could not say, “I shall miss you,” because he would thus be identifying himself in a relationship to me, or me in relationship to himself. To say, “I shall miss you” would be to assert a basic premise about our mutual relationship by defining the sorts of messages which should be characteristic of that relationship. Observably, the schizophrenic avoids or distorts anything which might seem to identify either himself or the person whom he is addressing. He may eliminate anything which implies that his message refers to, and is a part of, a relationship between two identifiable people, with certain styles and premises governing their behavior in that relationship. He may avoid anything which might enable the other to interpret what he says. He may obscure the fact that he is speaking in metaphor or in some special code, and he is likely to distort or omit all reference to time and place. If we use a Western Union telegram form as an analogy, we might say that he omits what would be put on the procedural parts of the telegraph form and will modify the text of his message to distort or omit any indication of these metacommunicative elements in the total normal message. What remains is likely to be a metaphoric statement unlabelled as to context. Or, in extreme cases, there may be nothing left but a stolid acting out of the message, “There is no relationship between us.” This much is observable and may be summarized by saying that the schizophrenic communicates as if he expected to be punished every time he indicates that he is right in his view of the context of his own message. The “double bind,” which is central to the etiological half of our hypothesis, may now simply be summarized by saying that it is an experience of being punished precisely for being right in one’s own view of the context. Our hypothesis assumes that repeated experience of punishment in sequences of this kind will lead the individual to behave habitually as if he expected such punishment. The mother of one of our patients poured out blame upon her husband for refusing for fifteen years to hand over control of the family finances to her. The father of the patient said, “I admit that it was a great mistake of me not to let you handle it, I admit that. I have corrected that. My reasons for thinking it was a mistake are entirely different from yours, but I admit that it was a very serious error on my part.” Mother: Now, you’re just being facetious. Father: No, I am not being facetious. Mother: Well, anyway I don’t care because when you come right down to it the debts were incurred, still there is no reason why a person would not be told of them. I think the woman should be told. Father: It may be the same reason why when Joe (their psychotic son) comes home from school and he has had trouble he doesn’t tell you. Mother: Well, that’s a good dodge. The pattern of such a sequence is simply the successive disqualification of each of the father’s contributions to the relationship. He is continuously being told that the messages are not valid. They are received as if they were in some way different from that which he thought he intended. We may say that he is penalized either for being right about his views of his own intentions, or he is penalized whenever his reply is appropriate to what she said. But, per contra, from her viewpoint, it seems that he is endlessly misinterpreting her, and this is one of the most peculiar characteristics of the dynamic system which surrounds—or is—schizophrenia. Every therapist who has dealt with schizophrenics will recognize the recurrent trap. The patient endeavors to put the therapist in the wrong by his interpretation of what the therapist said, and the patient does this because he expects the therapist to misinterpret what he (the patient) said. The bind becomes mutual. A stage is reached in the relationship in which neither person can afford to receive or emit metacommunicative messages without distortion. There is, however, usually, an asymmetry in such relationships. This mutual doublebinding is a type of struggle and commonly one or the other has the upper hand. We have deliberately chosen to work with families where one of the offspring is the identified patient, and, partly for this reason, in our data, it is the supposedly normal parents who have the upper hand over an identifiably psychotic younger member of the group. In such cases, the asymmetry takes the curious form that the identified patient sacrifices himself to maintain the sacred illusion that what the parent says makes sense. To be close to that parent, he must sacrifice his right to indicate that he sees any metacommunicative incongruencies, even when his perception of these incongruencies is correct. There is, therefore, a curious disparity in the distribution of awareness of what is happening. The patient may know but must not tell, and thereby enables the parent to not know what he or she is doing. The patient is an accomplice in the parent’s unconscious hypocrisy. The result may be very great unhappiness and very gross, but al-ways systematic, distortions of communication. Moreover, these distortions are always precisely those which would seem appropriate when the victims are faced with a trap to avoid which would be to destroy the very nature of the self. This paradigm is neatly illustrated by a pas-sage which is worth quoting in full from Festing Jones’ life of Samuel Butler. [49] Butler went to dinner at Mr. Seebohm’s where he met Skertchley, who told them about a rat-trap invented by Mr. Tylor’s coachman. Mr. Dunkett found all his traps fail one after another, and was in such despair at the way the corn got eaten that he resolved to invent a rat-trap. He began by putting himself as nearly as possible in the rat’s place. “Is there anything,” he asked himself, “in which, if I were a rat, I should have such complete confidence that I could not suspect it without suspecting everything in the world and being unable henceforth to move fearlessly in any direction?” He pondered for a while and had no answer, till one night the room seemed to become full of light and he hears a voice from heaven saying: “Drain-pipes.” Then he saw his way. To suspect a common drain-pipe would be to cease to be a rat. Here Skertchley enlarged a little, explaining that a spring was to be concealed inside, but that the pipe was to be open at both ends; if the pipe were closed at one end, a rat would naturally not like going into it, for he would not feel sure of being able to get out again; on which I [Butler] interrupted and said: “Ah, it was just this which stopped me from going in-to the Church.” When he [Butler] told me this I [Jones] knew what was in his mind, and that, if he had not been in such respectable company, he would have said: “It was just this which stopped me from getting married.” Notice that Dunkett could only invent this double bind for rats by way of an hallucinatory experience, and that both Butler and Jones immediately regarded the trap as a paradigm for human relations. Indeed, this sort of dilemma is not rare and is not confined to the contexts of schizophrenia. The question which we must face, therefore, is why these sequences are either specially frequent or specially destructive in those families which contain schizophrenics. I do not have the statistics to assert this; however, from limited but intense observation of a few of these families, I can offer an hypothesis about the group dynamics which would determine a system of interaction, such that double bind experiences must recur ad nauseam. The problem is to construct a model which will necessarily cycle to recreate these patterned sequences over and over again. Such a model is provided in Von Neumann’s and Morgenstern’s [50] theory of games, presented here not, indeed, with its full mathematical rigor, but at least in terms some-what technical. Von Neumann was concerned with mathematical study of the formal conditions under which entities, with total intelligence and a preference for gain, would form coalitions among themselves in order to maximize the profits which coalition members might receive at the expense of the non-members. He imagined these entities as engaged in some-thing like a game and proceeded to ask about the formal characteristics of the rules which would compel the totally intelligent but gain-oriented players to form coalitions. A very curious conclusion emerged, and it is this conclusion which I would propose as a model. Evidently, coalition between players can only emerge when there are at least three of them. Any two may then get together to exploit the third, and if such a game be symmetrically devised, it evidently has three solutions which we may represent as
For this three-person system, Von Neumann demonstrates that once formed, any one of these coalitions will be stable. If A and B are in alliance, there is nothing C can do about it. And, interestingly enough, A and B will necessarily develop conventions (supplementary to the rules) which will, for example, forbid them from listening to C’s approaches. In the five-person game, the position becomes quite different; there will be a variety of possibilities. It may be that four players contemplate a combination against one, illustrated in the following five patterns:
But none of these would be stable. The four players within the coalition must, necessarily, engage in a subgame in which they maneuver against each other to achieve an unequal division of the gains which the coalition could squeeze out of the fifth player. This must lead to a coalition pattern which we may describe as 2 vs. 2 vs. 1, i.e., BC vs. DE vs. A. In such a situation, it would become possible for A to approach and join one of these pairs, so that the coalition system will become 3 vs. 2. But in the system 3 vs. 2, it would be advantageous for the three to recruit over to their side one of the two, in order to make their gains more certain. Now we are back to a 4 vs. 1 system—not necessarily the particular line-up that we started from but at any rate a system having the same general properties. It, in turn, must break down into 2 vs. 2 vs. 1, and so on. In other words, for every possible pattern of coalitions, there is at least one other pattern which will “dominate” it—to use Von Neumann’s term—and the relationship of domination between solutions is intransitive. There will al-ways be a circular list of alternative solutions so that the system will never cease from passing on from solution to solution, always selecting another solution which is preferable to that which preceded it. This means, in fact, that the robots (owing to their total intelligence) will be unable to decide upon a single “play” of the game. I offer this model as being reminiscent of what happens in schizophrenic families. No two members seem able to get together in a coalition stable enough to be decisive at the given moment. Some other member or members of the family will always intervene. Or, lacking such intervention, the two members who contemplate a coalition will feel guilty vis-a-vis what the third might do or say, and will draw back from the coalition. Notice that it takes five hypothetical entities with total intelligence to achieve this particular sort of instability or oscillation in a Von Neumannian game. But three human beings seem to be enough. Perhaps they are not totally intelligent or perhaps they are systematically inconsistent regarding the sort of “gain” in terms of which they are motivated. I want to stress that in such a system, the experience of each separate individual will be of this kind: every move which he makes is the common-sense move in the situation as he correctly sees it at that moment, but his every move is subsequently demonstrated to have been wrong by the moves which other members of the system make in response to his “right” move. The individual is thus caught in a perpetual sequence of what we have called double bind experiences. I do not know how valid this model may be, but I offer it for two reasons. First, it is proposed as a sample of trying to talk about the larger system—the family— instead of talking, as we habitually do, about the individual. If we are to understand the dynamics of schizophrenia, we must devise a language adequate to the phenomena which are emergent in this larger system. Even if my model is inappropriate, it is still worthwhile to try to talk in the sort of language which we shall need for describing these emergent phenomena. Secondly, conceptual models, even when incorrect, are useful to the extent that criticism of the model may point to new theoretical developments. Let me, therefore, point out one criticism of this model, and consider to what ideas it will lead. There is no theorem in Von Neumann’s book which would indicate that his entities or robots, engaged in this infinite dance of changing coalitions, would ever become schizophrenic. According to the abstract theory, the entities simply remain totally intelligent ad infinitum. Now, the major difference between people and von Neumann’s robots lies in the fact of learning. To be infinitely intelligent implies to be infinitely flexible, and the players in the dance which I have described could never experience the pain which human beings would feel if continually proven wrong whenever they had been wise. Human beings have a commitment to the solutions which they discover, and it is this psychological commitment that makes it possible for them to be hurt in the way members of a schizophrenic family are hurt. It appears then, from consideration of the model, that the double bind hypothesis, to be explanatory of schizophrenia, must depend upon certain psychological assumptions about the nature of the human individual as a learning organism. For the individual to be prone to schizophrenia, individuation must comprise two contrasting psychological mechanisms. The first is a mechanism of adaptation to demands of the personal environment; and the second, a process or mechanism whereby the individual becomes either briefly or enduringly committed to the adaptations which the first process has discovered. I think that what l am calling a brief commitment to an adaptation is what Bertalanffy called the immanent state of action; and that the more enduring commitment to adaptation is simply what we usually call “habit.” What is a person? What do I mean when I say “I?” Perhaps what each of us means by the “self” is in fact an aggregate of habits of perception and adaptive action plus, from moment to moment, our “immanent states of action.” If somebody attacks the habits and immanent states which characterize me at the given moment of dealing with that somebody—that is, if they attack the very habits and immanent states which have been called into being as part of my relationship to them at that moment—they are negating me. If I care deeply about that other person, the negation of me will be still more painful. What we have said so far is enough to indicate the sorts of strategy—or perhaps we should say symptoms—which are to be expected in that strange institution, the schizophrenic family. But it is still surprising to observe how these strategies may be continually and habitually practiced without friends and neighbors noticing that something is wrong. From theory we may predict that every participant member of such an institution must be defensive of his or her own immanent states of action and enduring adaptive habits; protective, that is, of the self. To illustrate with one example: a colleague had been working for some weeks with one of these families, particularly with the father, the mother, and their adult schizophrenic son. His meetings were on the conjoint pattern—the members of the family being present together. This apparently provoked some anxiety in the mother and she requested face-to-face interviews with me. This move was discussed at the next conjoint meeting and in due course she came to her first session. Upon arrival she made a couple of conversational remarks, and then opened her purse and from it handed me a piece of paper, saying, “It seems my husband wrote this.” I unfolded the paper and found it to be a single sheet of single-spaced typescript, starting with the words, “My husband and I much appreciate the opportunity of discussing our problems with you,” etc. The document then went on to outline certain specific questions which “I would like to raise. It appeared that the husband had, in fact, sat down at his typewriter the night before and had written this letter to me as though it were written by his wife, and in it he outlined the questions for her to discuss with me. In normal daily life this sort of thing is common enough; it passes muster. When attention is focused upon the characteristic strategies, however, these self-protecting and self-destroying maneuvers become conspicuous. One suddenly discovers that in such families these strategies seem to pre-dominate over all others. It becomes hardly surprising that the identified patient exhibits behavior which is almost a caricature of that loss of identity which is characteristic of all the family members. I believe that this is the essence of the matter, that the schizophrenic family is an organization with great ongoing stability whose dynamics and inner workings are such that each member is continually undergoing the experience of negation of self. Minimal Requirements for a Theory of Schizophrenia [51] Every science, like every person, has a duty toward its neighbors, not perhaps to love them as itself, but still to lend them its tools, to borrow tools from them, and, generally, to keep the neighboring sciences straight. We may perhaps judge of the importance of an advance in any one science in terms of the changes which this advance compels the neigh-boring sciences to make in their methods and in their thinking. But always there is the rule of parsimony. The changes which we in the behavioral sciences may ask for in genetics, or in philosophy, or in information theory must always be minimal. The unity of science as a whole is achieved by this system of minimal demands imposed by each science upon its neighbors, and—not a little—by the lending of conceptual tools and patterns which occurs among the various sciences. My purpose, therefore, in the present lecture is not so much to discuss the particular theory of schizophrenia which we have been developing at Palo Alto. Rather, I want to indicate to you that this theory and others like it have impact upon ideas about the very nature of explanation. I have used the title “Minimal Requirements for a Theory of Schizophrenia,” and what I had in mind in choosing this title was a discussion of the implications of the double bind theory for the wider field of behavioral science and even, beyond that, its effect upon evolutionary theory and biological epistemology. What minimal changes does this theory demand in related sciences? I want to deal with questions about the impact of an experiential theory of schizophrenia upon that triad of related sciences, learning theory, genetics, and evolution. The hypothesis may first be briefly described. In its essentials, the idea appeals only to everyday experience, and elementary common sense. The first proposition from which the hypothesis is derived is that learning occurs always in some context which has formal characteristics. You may think, if you will, of the formal characteristics of an instrumental avoidance sequence, or of the formal characteristics of a Pavlovian experiment. To learn to lift a paw in a Pavlovian context is different from learning the same action in a context of instrumental reward. Further, the hypothesis depends upon the idea that this structured context also occurs within a wider context—a metacontext if you will—and that this sequence of contexts is an open, and conceivably infinite, series. The hypothesis also assumes that what occurs within the narrow context (e.g., instrumental avoidance) will be affected by the wider context within which this smaller one has its being. There may be incongruence or conflict between context and metacontext. A context of Pavlovian learning may, for example, be set within a metacontext which would punish learning of this kind, perhaps by insisting upon insight. The organism is then faced with the dilemma either of being wrong in the primary context or of being right for the wrong reasons or in a wrong way. This is the so-called double bind. We are investigating the hypothesis that schizophrenic communication is learned and be-comes habitual as a result of continual traumata of this kind. That is all there is to it. But even these “common-sense” assumptions break away from the classical rules of scientific epistemology. We have learned from the paradigm of the freely falling body—and from many similar paradigms in many other sciences—to approach scientific problems in a peculiar way: the problems are to be simplified by ignoring— or postponing consideration of—the possibility that the larger context may influence the smaller. Our hypothesis runs counter to this rule, and is focused precisely upon the determining relations between larger and smaller contexts. Even more shocking is the fact that our hypothesis suggests —but does not stand or fall with the suggestion—that there may be an infinite regress of such relevant contexts. In all of this, the hypothesis requires and reinforces that revision in scientific thought which has been occurring in many fields, from physics to biology. The observer must be included within the focus of observation, and what can be studied is always a relationship or an infinite regress of relationships. Never a “thing.” An example will make clear the relevance of the larger contexts. Let us consider the larger context within which a learning experiment might be conducted using a schizophrenic as a subject. The schizophrenic is what is called a patient, vis-a-vis a member of a superior and unloved organization, the hospital staff. If the patient were a good pragmatic Newtonian, he would be able to say to himself: “The cigarettes which I can get by doing what this fellow expects me to do are after all only cigarettes, and as an applied scientist I will go ahead and do what he wants me to do. I will solve the experimental problem and obtain the cigarettes.” But human beings, and especially schizophrenics, do not always see the matter this way. They are affected by the circumstance that the experiment is being conducted by somebody whom they would rather not please. They may even feel that there would be a certain shamelessness about seeking to please some one whom they dislike. It thus comes about that the sign of the signal which the experimenter emits, giving or withholding cigarettes, is reversed. What the experimenter thought was a reward turns out to be a message of partial indignity, and what the experimenter thought was a punishment becomes in part a source of satisfaction. Consider the acute pain of the mental patient in a large hospital who is momentarily treated as a human being by a member of the staff. To explain the observed phenomena we always have to consider the wider context of the learning experiment, and every transaction between persons is a context of learning. The double bind hypothesis, then, depends upon attributing certain characteristics to the learning process. If this hypothesis is even approximately true, room must be made for it within the theory of learning. In particular, learning theory must be made discontinuous so as to accommodate the discontinuities of the hierarchy of the contexts of learning to which I have referred. Moreover, these discontinuities are of a peculiar nature. I have said that the larger context may change the sign of the reinforcement proposed by a given message, and evidently the larger context may also change the mode—may place the message in the category of humor, metaphor, etc. The setting may make the message inappropriate. The message may be out of tune with the larger context, and so on. But there are limits to these modifications. The context may tell the recipient anything about the message, but it cannot ever destroy or directly contradict the latter. “I was lying when I said `The cat is on the mat’ “ tells the vis-a-vis nothing about the location of the cat. It tells him only something about the reliability of his previous information. There is a gulf between context and message (or between metamessage and message) which is of the same nature as the gulf between a thing and the word or sign which stands for it, or between the members of a class and the name of the class. The context (or metamessage) classifies the message, but can never meet it on equal terms. In order to fit these discontinuities into learning theory, it is necessary to enlarge the scope of what is to be included within the concept of learning. What the experimenters have described as “learning” are in general changes in what an organism does in response to a given signal. The experimenter observes, for example, that at first the buzzer evokes no regular response, but that after repeated trials in which the buzzer has been followed by meat powder, the animal will begin to salivate whenever it hears the buzzer. We may say loosely that the animal has begun to attach significance or meaning to the buzzer. A change has occurred. In order to construct a hierarchic series, we pick on the word “change.” Series such as we are interested in are in general built in two ways. Within the field of pure communications theory, the steps of an hierarchic series may be constructed by successive use of the word “about,” or “meta.” Our hierarchic series will then consist of message, metamessage, meta-metamessage, and so on. Where we deal with phenomena marginal to communications theory, similar hierarchies may be constructed by the piling up of “change” upon “change.” In classical physics, the sequence: position; velocity (i.e., change in position); acceleration (i.e., change in velocity or change in change of position); change of acceleration, etc., is an example of such a hierarchy. Further complications are added—rarely in classical physics but commonly in human communication—by noting that messages may be about (or “meta” to) the relationship between messages of different levels. The smell of the experimental harness may tell the dog that the buzzer will mean meat powder. We will then say that the message of the harness is meta to the message of the buzzer. But in human relations another sort of complexity may be generated; e.g., messages may be emitted forbidding the subject to make the meta connection. An alcoholic parent may punish a child for showing that he knows that he should look out for storms whenever the parent gets the bottle out of the cupboard. The hierarchy of messages and contexts thus becomes a complex branching structure. So we can construct a similar hierarchic classification within learning theory in substantially the same way as the physicists. What the experimenters have investigated is change in the receipt of a signal. But, clearly, to receive a signal already denotes change—a change of a simpler or lower order than that which the experimenters have investigated. This gives us the two first steps in a hierarchy of learning, and above these an infinite series can be imagined. This hierarchy [52] can now be laid out as follows:
At this point it is necessary to compare three types of hierarchy with which we are faced: (a) the hierarchy of orders of learning; (b) the hierarchy of contexts of learning, and (c) hierarchies of circuit structure which we may—indeed, must— expect to find in a telencephalized brain. It is my contention that (a) and (b) are synonymous in the sense that all statements made in terms of contexts of learning could be translated (without loss or gain) into statements in terms of orders of learning, and, further, that the classification or hierarchy of contexts must be isomorphic with the classification or hierarchy of orders of learning. Beyond this, I believe that we should look forward to a classification or hierarchy of neurophysiological structures which will be isomorphic with the other two classifications. This synonymy between statements about context and statements about orders of learning seems to me to be self-evident, but experience shows that it must be spelled out. “The truth cannot be said so as to be understood, and not be believed,” but, conversely, it cannot be believed until it is said so as to be understood. It is necessary first to insist that in the world of communication the only relevant entities or “realities” are messages, including in this term parts of messages, relations between messages, significant gaps in messages, and so on. The perception of an event or object or relation is real. It is a neurophysiological message. But the ‘event itself or the object itself cannot enter this world and is, therefore, irrelevant and, to that extent, unreal. Conversely, a message has no reality or relevance qua message, in the Newtonian world: it there is reduced to sound waves or printer’s ink. By the same token, the “contexts” and “contexts of con-texts” upon which I am insisting are only real or relevant insofar as they are communicationally effective, i.e., function as messages or modifiers of messages. The difference between the Newtonian world and the world of communication is simply this: that the Newtonian world ascribes reality to objects and achieves its simplicity by excluding the context of the context—excluding indeed all metarelationships—a fortiori excluding an infinite regress of such relations. In contrast, the theorist of communication insists upon examining the metarelationships while achieving its simplicity by excluding all objects. This world, of communication, is a Berkeleyan world, but the good bishop was guilty of understatement. Relevance or reality must be denied not only to the sound of the tree which falls unheard in the forest but also to this chair which I can see and on which I am sitting. My perception of the chair is communicationally real, and that on which I sit is, for me, only an idea, a message in which I put my trust. “In my thought, one thing is as good as another in this world, and the shoe of a horse will do,” because in thought and in experience there are no things, but only messages and the like. In this world, indeed, I, as a material object, have no relevance and, in this sense, no reality. “I,” however, exist in the communicational world as an essential element in the syntax of my experience and in the experience of others, and the communications of others may damage my identity, even to the point of breaking up the organization of my experience. Perhaps one day, an ultimate synthesis will be achieved to combine the Newtonian and the communicational worlds. But that is not the purpose of the present discussion. Here I am concerned to make clear the relation between the contexts and the orders of learning, and to do this it was first necessary to bring into focus the difference between Newtonian and communicational discourse. With this introductory statement, however, it becomes clear that the separation between contexts and orders of learning is only an artifact of the contrast between these two sorts of discourse. The separation is only maintained by saying that the contexts have location outside the physical individual, while the orders of learning are located inside. But in the communicational world, this dichotomy is irrelevant and meaningless. The contexts have communicational reality only insofar as they are effective as messages, i.e., insofar as they are represented or reflected (correctly or with distortion) in multiple parts of the communicational system which we are studying; and this system is not the physical individual but a wide network of pathways of messages. Some of these pathways happen to be located outside the physical individual, others inside; but the characteristics of the system are in no way dependent upon any boundary lines which we may superpose upon the communicational map. It is not communicationally meaningful to ask whether the blind man’s stick or the scientist’s microscope are “parts” of the man who uses them. Both stick and microscope are important pathways of communication and, as such, are parts of the network in which we are interested; but no boundary line—e.g., halfway up the stick—can be relevant in a description of the topology of this net. However, this discarding of the boundary of the physical individual does not imply (as some might fear) that communicational discourse is necessarily chaotic. On the contrary, the proposed hierarchic classification of learning and/or context is an ordering of what to the Newtonian looks like chaos, and it is this ordering that is demanded by the double-bind hypothesis. Man must be the sort of animal whose learning is characterized by hierarchic discontinuities of this sort, else he could not become schizophrenic under the frustrations of the double bind. On the evidential side, there is beginning to be a body of experiment demonstrating the reality of third-order learning [53]; but on the precise point of discontinuity between these orders of learning there is, so far as I know, very little evidence. The experiments of John Stroud are worth quoting. These were tracking experiments. The subject is faced with a screen on which a spot moves to represent a moving target. A second spot, representing the aim of a gun, can be controlled by the subject, who operates a pair of knobs. The subject is challenged to maintain coincidence between the target spot and the spot over which he has control. In such an experiment the target can be given various sorts of motion, characterized by second-, third-, or higher-order derivatives. Stroud showed that, as there is a discontinuity in the orders of the equations which a mathematician might use to describe the movements of the target spot, so also there is a discontinuity in the learning of the experimental subject. It is as if a new learning process were involved with each step to a higher order of complexity in the movement of the target. It is to me fascinating to find that what one had supposed was a pure artifact of mathematical description is also apparently an inbuilt characteristic of the human brain, in spite of the fact that this brain certainly does not operate by means of mathematical equations in such a task. There is also evidence of a more general nature which would support the notion of discontinuity between the orders of learning. There is, for example, the curious fact that psychologists have not habitually regarded what I call learning of the first order, the receipt of a meaningful signal, as learning at all; and the other curious fact, that psychologists have until recently shown very little appreciation of that third order of learning, in which the psychiatrist is predominantly interested. There is a formidable gulf between the thinking of the experimental psychologist and the thinking of the psychiatrist or anthropologist. This gulf I believe to be due to the discontinuity in the hierarchic structure. Learning, Genetics, and Evolution Before we consider the impact of the double bind hypothesis upon genetics and evolutionary theory, it is necessary to examine the relationship between theories of learning and these two other bodies of knowledge. I referred earlier to the three subjects together as a triad. The structure of this triad we must now consider. Genetics, which covers the communicational phenomena of variation, differentiation, growth, and heredity, is commonly recognized as the very stuff of which evolutionary theory is made. The Darwinian theory, when purged of Lamarckian ideas, consisted of a genetics in which variation was presumed to be random, combined with a theory of natural selection would impart adaptive direction to the accumulation of changes. But the relation between learning and this theory has been a matter of violent controversy which has raged over the so-called “inheritance of acquired characteristics.” Darwin’s position was acutely challenged by Samuel Butler, who argued that heredity should be compared with—even identified with—memory. Butler proceeded from this premise to argue that the processes of evolutionary change, and especially adaptation, should be regarded as the achievements of a deep cunning in the ongoing flow of life, not as fortuitous bonuses conferred by luck. He drew a close analogy between the phenomena of invention and the phenomena of evolutionary adaptation, and was perhaps the first to point out the existence of residual organs in machines. The curious homology whereby the engine is located in the front of an automobile, where the horse used to be, would have delighted him. He also argued very cogently that there is a process whereby the newer inventions of adaptive behavior are sunk deeper into the biological system of the organism. From planned and conscious actions they become habits, and the habits become less and less conscious and less and less subject to voluntary control. He assumed, with-out evidence, that this habitualization, or sinking process, could go so deep as to contribute to the body of memories, which we would call the genotype, and which determine the characteristics of the next generation. The controversy about the inheritance of acquired characteristics has two facets. On the one hand, it appears to be an argument which could be settled by factual material. One good case of such inheritance might settle the matter for the Lamarckian side. But the case against such inheritance, being negative, can never be proved by evidence and must rely upon an appeal to theory. Usually those who take the negative view argue from the separation between germ plasm and somatic tissue, urging that there can be no systematic communication from the soma to the germ plasm in the light of which the genotype might revise itself. The difficulty looks like this: conceivably a biceps muscle modified by use or disuse might secrete specific metabolites into the circulation, and these might conceivably serve as chemical messengers from muscle to gonad. But (a) it is difficult to believe that the chemistry of biceps is so different from that of, say, triceps that the message could be specific, and (b) it is difficult to believe that the gonad tissue could be equipped to be appropriately affected by such messages. After all, the receiver of any message must know the code of the sender, so that if the germ cells are able to receive the messages from the somatic tissue, they must already be carrying some version of the somatic code. The directions which evolutionary change could take with the aid of such messages from the soma would have to be prefigured in the germ plasm. The case against the inheritance of acquired characteristics thus rests upon a separation, and the difference between the schools of thought crystallizes around philosophic reactions to such a separation. Those who are willing to think of the world as organized upon multiple and separable principles will accept the notion that somatic changes induced by environment may be covered by an explanation which could be totally separate from the explanation of evolutionary change. But those who prefer to see a unity in nature will hope that these two bodies of explanation can somehow be interrelated. Moreover, the whole relationship between learning and evolution has undergone a curious change since the days when Butler maintained that evolution was a matter of cunning rather than luck, and the change which has taken place is certainly one which neither Darwin nor Butler could have foreseen. What. has happened is that many theorists now assume learning to be fundamentally a stochastic or probabilistic affair, and indeed, apart from nonparsimonious theories which would postulate some entelechy at the console of the mind, the stochastic approach is perhaps the only organized theory of the nature of learning. The notion is that random changes occur, in the brain or else-where, and that the results of such random change are selected for survival by processes of reinforcement and extinction. In basic theory, creative thought has come to resemble the evolutionary process in its fundamentally stochastic nature. Reinforcement is seen as giving direction to the accumulation of random changes of the neural system, just as natural selection is seen as giving direction to the accumulation of random changes of variation. In both the theory of evolution and the theory of learning, however, the word “random” is conspicuously undefined, and the word is not an easy one to define. In both fields, it is assumed that while change may be dependent upon probabilistic phenomena, the probability of a given change is determined by something different from probability. Underlying both the stochastic theory of evolution and that of learning, there are unstated theories regarding the determinants of the probabilities in question. [54] If, however, we ask about change in these determinants, we shall again be given stochastic answers, so that the word “random,” up-on which all of these explanations turn, appears to be a word whose meaning is hierarchically structured, like the meaning of the word “learning,” which was discussed in the first part of this lecture. Lastly, the question of the evolutionary function of acquired characteristics has been reopened by Waddington’s work on phenocopies in Drosophila. At the very least, this work indicates that the changes of phenotype which can be achieved by the organism under environmental stress are a very important part of the machinery by which the species or hereditary line maintains its place in a stressful and competitive environment, pending the later appearance of some mutation or other genetic change which may make the species or line better able to deal with the ongoing stress. In this sense at least, the acquired characteristics have important evolutionary function. However, the actual experimental story indicates something more than this and is worth reproducing briefly. What Waddington works with is a phenocopy of the phenotype brought about by the gene bithorax. This gene has very profound effects upon the adult phenotype. In its presence the third segment of the thorax is modified to resemble the second, and the little balancing organs, or halteres, on this third segment become wings. The result is a four-winged fly. This four-winged characteristic can be produced artificially in flies which do not carry the gene bithorax by subjecting the pupae to a period of intoxication with ethyl ether. Waddington works with large populations of Drosophila flies derived from a wild strain believed to be free of the gene bithorax. He subjects the pupae of this population in successive generations to the ether treatment, and from the resulting adults selects for breeding those which show the best approximation to bithorax. He has continued this experiment over many generations, and already in the twenty-seventh generation he finds that the bithorax appearance is achieved by a limited number of flies whose pupae were withdrawn from the experimental treatment and not subjected to ether. Upon breeding from these, it turns out that their bithorax appearance is not due to the presence of the specific gene, bithorax, but is due to a constellation of genes which work together to give this effect. These very striking results can be read in various ways. We can say that in selecting the best phenocopies, Wadding-ton was in fact selecting for a genetic potentiality for achieving this phenotype. Or we can say that he was selecting to reduce the threshold of ether stress necessary to produce this result. Let me suggest a possible model for the description of these phenomena. Let us suppose that the acquired characteristic is achieved by some process of fundamentally stochastic nature—perhaps some sort of somatic learning—and the mere fact that Waddington is able to select the “best” phenocopies would lend support to this assumption. Now, it is evident that any such process is, in the nature of the case, wasteful. To achieve a result by trial and error which could have been achieved in any more direct way necessarily consumes time and effort in some sense of these words. Insofar as we think of adaptability as achieved by stochastic process, we let in the notion of an economics of adaptability. In the field of mental process, we are very familiar with this sort of economics, and in fact a major and necessary saving is achieved by the familiar process of habit formation. We may, in the first instance, solve a given problem by trial and error; but when similar problems recur later, we tend to deal with them more and more economically by taking them out of the range of stochastic operation and handing over the solutions to a deeper and less flexible mechanism, which we call “habit.” It is, therefore, perfectly conceivable that some analogous phenomenon may obtain in regard to the production of bithorax characteristics. It may be more economical to produce these by the rigid mechanism of genetic determination rather than by the more wasteful, more flexible (and perhaps less predictable) method of somatic change. This would mean that in Waddington’s population of flies there would be a selective benefit for any hereditary line of flies which might contain appropriate genes for the whole—or for some part—of the bithorax phenotype. It is also possible that such flies would have an extra advantage in that their somatic adaptive machinery might then be available for dealing with stresses of other kinds. It would appear that in learning, when the solution of the given problem has been passed on to habit, the stochastic or exploratory mechanisms are set free for the solution of other problems, and it is quite conceivable that a similar advantage is achieved by passing on the business of determining a somatic characteristic to the gene-script. [55] It may be noted that such a model would be characterized by two stochastic mechanisms: first, the more superficial mechanism by which the changes are achieved at the somatic level, and, second, the stochastic mechanism of mutation (or the shuffling of gene constellations) at the chromosomal level. These two stochastic systems will, in the long run under selective conditions, be compelled to work together, even though no message can pass from the more superficial somatic system to the germ plasm. Samuel Butler’s hunch that something like “habit” might be crucial in evolution was perhaps not too wide of the mark. With this introduction we can now proceed to look at the problems which a double bind theory of schizophrenia would pose for the geneticist. Genetic Problems Posed by Double Bind Theory If schizophrenia be a modification or distortion of the learning process, then when we ask about the genetics of schizophrenia, we cannot be content just with genealogies upon which we discriminate some individuals who have been committed to hospitals, and others who have not. There is no a priori expectation that these distortions of the learning process, which are highly formal and abstract in their nature, will necessarily appear with that appropriate content which would result in hospital commitment. Our task as geneticists will not be the simple one upon which the Mendelians concentrated, assuming a one-to-one relation between phenotype and genotype. We cannot simply assume that the hospitalized members carry a gene for schizophrenia and that the others do not. Rather, we have to expect that several genes or constellations of genes will alter patterns and potentialities in the learning process, and that certain of the resultant patterns, when confronted by appropriate forms of environmental stress, will lead to overt schizophrenia. In the most general terms, any learning, be it the absorption of one bit of information or a basic change in the character structure of the whole organism, is, from the point of view of genetics, the acquisition of an “acquired characteristic.” It is a change in the phenotype, of which that phenotype was capable thanks to a whole chain of physiologic and embryologic processes which lead back to the genotype. Every step in this backward leading series may (conceivably) be modified or interrupted by environmental impacts; but, of course, many of the steps will be rigid in the sense that environmental impact at that point would destroy the organism. We are concerned only with those points in the hierarchy at which environment can take effect and the organism still be viable. How many such points there may be we are far from knowing. And ultimately, when we reach the genotype, we are concerned to know whether the genotypic elements in which we are interested are or are not variable. Do differences occur from genotype to genotype which will affect the modifiability of the processes leading to the phenotypic behaviors which we observe? In the case of schizophrenia we deal evidently with a relatively long and complex hierarchy; and the natural history of the disease indicates that the hierarchy is not merely a chain of causes and effects from gene-script to phenotype, which chain becomes at certain points conditional upon environmental factors. Rather, it seems that in schizophrenia the enviromental factors themselves are likely to be modified by the subject’s behavior whenever behavior related to schizophrenia starts to appear. To illustrate these complexities, it is perhaps worthwhile to consider for a moment the genetic problems presented by other forms of communicational behavior—humor, mathematical skill, or musical composition. Perhaps in all these cases, there are considerable genetic differences between individuals in those factors which make for an ability to acquire the appropriate skills. But the skills themselves and their particular expression also depend largely upon environmental circumstances and even upon specific training. In addition, however, to these two components of the situation, there is the fact that the individual who shows ability, e.g., in musical composition, is likely to mold his environment in a direction which will favor his developing his ability, and that he will, in turn, create an environment for others which will favor their development in the same direction. In the case of humor, the situation may even be one degree more complicated. It is not clear that in this case the relationship between humorist and his human environment will necessarily be symmetrical. Granted that in some cases the humorist promotes humor in others, in many other cases there occurs the well-known complementary relationship between humorist and “straight” man. Indeed, the humorist, insofar as he hogs the center of the stage, may reduce others to the position of receiving humor but not themselves contributing. These considerations can be applied unchanged to the problem of schizophrenia. Anybody watching the trans-actions which occur between the members of a family containing an identified schizophrenic will perceive immediately that the symptomatic behavior of the identified patient fits with this environment and, indeed, promotes in the other members those characteristics which evoke the schizophrenic behavior. Thus, in addition to the two stochastic mechanisms outlined in the previous section, we now face a third, namely the mechanism of those changes whereby the family, perhaps gradually, becomes organized (i.e., limits the behaviors of the component individuals) in such a way as to fit the schizophrenia. A question which is frequently asked is this: “If this family is schizophrenogenic, how does it happen that all of the siblings are not diagnosable as schizophrenic patients?” Here it is necessary to insist that the family, like any other organization, creates and depends upon differentiation among its members. As in many organizations, there is room only for one boss, in spite of the fact that the organization operates upon those premises which would induce administrative skill and ambition in its members; so also in the schizophrenogenic family there may be room for only one schizophrenic. The case of the humorist is quite comparable. The organization of the Marx family, which could create four professional humorists, must have been quite exceptional. More usually one such individual would suffice to re-duce the others to more commonplace behavioral roles. Genetics may play a role in deciding which of several siblings shall be the schizophrenic—or which shall be the clown—but it is by no means clear that such hereditary factors could completely determine the evolution or roles within the family organization. A second question—to which we have no final answer—concerns the degree of schizophrenia (genetic and/or acquired) which must be assigned to the schizophrenogenic parent. Let me, for purposes of the present inquiry, define two degrees of schizophrenic symptomatology, and note that the so-called “psychotic break” sometimes divides these two degrees. The more serious and conspicuous degree of symptomatology is what is conventionally called schizophrenia. I will call it “overt schizophrenia.” The persons so afflicted be-have in ways which are grossly deviant from the cultural-environment. In particular, their behavior seems characterized by conspicuous or exaggerated errors and distortions regarding the nature and typing of their own messages (internal and external), and of the messages which they receive from others. Imagination is seemingly confused with perception. The literal is confused with the metaphoric. Internal messages are confused with external. The trivial is confused with the vital. The originator of the message is confused with the recipient and the perceiver with the thing perceived. And so on. In general, these distortions boil down to this: that the patient behaves in such a way that he shall be responsible for no metacommunicative aspect of his messages. He does this, moreover, in a manner which makes his condition conspicuous: in some cases, flooding the environment with messages whose logical typing is either totally obscure or misleading; in other cases, overtly withdrawing to such a point that he commits himself to no overt message. In the “covert” case the behavior of the identified patient is similarly but less conspicuously characterized by a continual changing of the logical typing of his or her messages, and a tendency to respond to the messages of others (especially to those of other family members) as though these were of logical type, different from that which the speaker intended. In this system of behavior the messages of the vis-a-vis are continually disqualified, either by indicating that they are inappropriate replies to what the covert schizophrenic has said or by indicating that they are the product of some fault in the character or motivation of the speaker. Moreover, this destructive behavior is in general maintained in such a way as to be undetected. So long as the covert schizophrenic can succeed in putting the other in the wrong, his or her pathology is obscured and the blame falls else-where. There is some evidence that these persons fear col-lapse into overt schizophrenia when faced by circumstances which would force them to recognize the pattern of their operations. They will even use the threat, “You are driving me crazy,” as a defense of their position. What I am here calling covert schizophrenia is characteristic of the parents of schizophrenics in the families which we have studied. This behavior, when it occurs in the mother, has been extensively caricatured; so I shall use here an example of which the central figure is the father. Mr. and Mrs. P. had been married some eighteen years and have a near-hebephrenic son of sixteen. Their marriage is difficult and is characterized by almost continual hostility. However, she is a keen gardener, and on a certain Sunday afternoon they worked together planting roses in what was to be her rose garden. She recalls that this was an unusually pleasant occasion. On Monday morning, the husband went to work as usual, and while he was gone Mrs. P. received a phone call from a complete stranger inquiring, rather apologetically, when Mrs. P. was going to leave the house. This came as somewhat of a surprise. She did not know that from her husband’s point of view the messages of shared work on the rose garden were framed within the larger context of his having agreed during the previous week to sell the house. In some cases, it almost looks as though the overt schizophrenic were a caricature of the covert. If we assume that both the grossly schizophrenic symptoms of the identified patient and the “covert schizophrenia” of the parents are in part determined by genetic factors, i.e., that, given the appropriate experiential setting, genetics in some degree renders the patient more liable to develop these particular patterns of behavior, then we have to ask how these two degrees of pathology might be related in a genetic theory. Certainly, no answer to this question is at present avail-able, but it is clearly possible we here face two quite distinct problems. In the case of the overt schizophrenic, the geneticist will have to identify those formal characteristics of the patient which will render him more likely to be driven to a psychotic break by the covertly inconsistent behavior of his parents (or by this in conjunction and contrast with the more consistent behavior of people outside the family). It is too early to make a specific guess at these characteristics, but we may reasonably assume that they would include some sort of rigidity. Perhaps the person prone to overt schizophrenia would be characterized by some extra strength of psychological commitment to the status quo as he at the moment sees it, which commitment would be hurt or frustrated by the parents’ rapid shifts of frame and context. Or perhaps this patient might be characterized by the high value of some parameter determining the relationship between problem solving and habit formation. Perhaps it is the person who too readily hands over the solutions to habit who is hurt by those changes in context which invalidate his solutions just at the moment when he has incorporated them into his habit structure. In the case of covert schizophrenia, the problem for the geneticist will be different. He will have to identify those formal characteristics which we observe in the parents of the schizophrenic. Here what is required would seem to be a flexibility rather than a rigidity. But, having had some experience in dealing with these people, ‘I must confess to feeling that they are rigidly committed to their patterns of inconsistency. Whether the two questions which the geneticist must answer can simply be lumped together by regarding the covert patterns as merely a milder version of the overt, or can be brought under a single head by suggesting that in some sense the same rigidity operates at different levels in the two cases, I do not know. Be that as it may, the difficulties which we here face are entirely characteristic of any attempt to find a genetic base for any behavioral characteristic. Notoriously, the sign of any message or behavior is subject to reversal, and this generalization is one of the most important. contributions of psycho-analysis, to our thinking. If we find that a sexual exhibitionist is the child of a prudish parent, are we justified in going to the geneticist to ask him to trace out the genetics of some basic characteristic which will find its phenotypic expression both in the prudishness of the parent and in the exhibitionism of the offspring? The phenomena of suppression and overcompensation lead continually to the difficulty that an excess of something at one level (e.g., in the genotype) may lead to a deficiency of the direct expression of that something at some more superficial level (e.g,. in the phenotype). And conversely. We are very far, then, from being able to pose specific questions for the geneticist; but I believe that the wider implications of what I have been saying modify somewhat the philosophy of genetics. Our approach to the problems of schizophrenia by way of a theory of levels or logical types has disclosed first that the problems of adaptation and learning and their pathologies must be considered in terms of a hierarchic system in which stochastic change occurs at the boundary points between the segments of the hierarchy. We have considered three such regions of stochastic change —the level of genetic mutation, the level of learning, and the level of change in family organization. We have disclosed the possibility of a relationship of these levels which orthodox genetics would deny, and we have disclosed that at least in human societies the evolutionary system consists not merely in the selective survival of those persons who happen to select appropriate environments but also in the modification of family environment in a direction which might enhance the phenotypic and genotypic characteristics of the individual members. If I had been asked fifteen years ago what I understood by the word materialism, I think I should have said that materialism is a theory about the nature of the universe, and I would have accepted as a matter of course the notion that this theory is in some sense nonmoral. I would have agreed that the scientist is an expert who can provide himself and others with insights and techniques, but that science could have nothing to say about whether these techniques should be used. In this, I would have been following the general trend of scientific philosophy associated with such names at Democritus, Galileo, Newton, [56] Lavoisier, and Darwin. I would have been discarding the less respectable views of such men as Heraclitus, the alchemists, William Blake, Lamarck, and Samuel Butler. For these, the motive for scientific inquiry was the desire to build a comprehensive view of the universe which should show what Man is and how he is related to the rest of the universe. The picture which these men were trying to build was ethical and aesthetic. There is this much connection certainly between scientific truth, on the one hand, and beauty and morality, on the other: that if a man entertain false opinions regarding his own nature, he will be led thereby to courses of action which will be in some profound sense immoral or ugly. Today, if asked the same question regarding the meaning of materialism, I would say that this word stands in my thinking for a collection of rules about what questions should be asked regarding the nature of the universe. But I would not suppose that this set of rules has any claim to be uniquely right. The mystic “sees the world in a grain of sand,” and the world which he sees is either moral or aesthetic, or both. The Newtonian scientist sees a regularity in the behavior of falling bodies and claims to draw from this regularity no normative conclusions whatsoever. But his claim ceases to be consistent at the moment when he preaches that this is the right way to view the universe. To preach is possible only in terms of normative conclusions. I have touched upon several matters in the course of this lecture which have been foci of controversy in the long battle between a nonmoral materialism and a more romantic view of the universe. The battle between Darwin and Samuel Butler may have owed some of its bitterness to what looked like personal affronts, but behind all this the argument concerned a question which had religious status. The battle was really about “vitalism.” It was a question of how much life and what order of life could be assigned to organisms; and Darwin’s victory amounted to this, that while he had not succeeded in detracting from the mysterious liveliness of the individual organism, he had at least demonstrated that the evolutionary picture could be reduced to natural “law.” It was, therefore, very important to demonstrate that the as yet unconquered territory—the life of the individual organism—could not contain anything which would recapture this evolutionary territory. It was still mysterious that living organisms could achieve adaptive change during their individual lives, and at all costs these adaptive changes, the famous acquired characteristics, must not have influence up-on the evolutionary tree. The “inheritance of acquired characteristics” threatened always to recapture the field of evolution for the vitalist side. One part of biology must be separate from the other. The objective scientists claimed, of course, to believe in a unity in nature—that ultimately the whole of natural phenomena would prove susceptible to their analysis, but for about a hundred years it was convenient to set up an impermeable screen between the biology of the individual and the theory of evolution. Samuel Butler’s “inherited memory” was an attack upon this screen. The question with which I am concerned in this concluding section of the lecture could be put in various ways. Is the battle between nonmoral materialism and the more mystical view of the universe affected by a change in the function assigned to the “acquired characteristics?” Does the older materialist thesis really depend upon the premise that contexts are isolable? Or is our view of the world changed when we admit an infinite regress of contexts, linked to each other in a complex network of metarelations? Does the possibility that the separate levels of stochastic change (in phenotype and genotype) may be connected in the larger context of the ecological system alter our allegiance in the battle? In breaking away from the premise that contexts are al-ways conceptually isolable, I have let in the notion of a universe much more unified—and in that sense much more mystical—than the conventional universe of nonmoral materialism. Does the new position so achieved give us new grounds for hope that science might answer moral or aesthetic questions? I believe that the position is significantly changed, and perhaps I can best make this clear by considering a matter which you as psychiatrists have thought about many times. I mean the matter of “control” and the whole related complex suggested by such words as manipulation, spontaneity, free will, and technique. I think you will agree with me that there is no area in which false premises regarding the nature of the self and its relation to others can be so surely productive of destruction and ugliness as this area of ideas about control. A human being in relation with another has very limited control over what happens in that relationship. He is a part of a two-person unit, and the. control which any part can have over any whole is strictly limited. The infinite regress of contexts which I have talked about is only another example of the same phenomenon. What I have contributed to this discussion is the notion. that the contrast between part and whole, whenever this contrast appears in the realm of communication, is simply a contrast in logical typing. The whole is always in a metarelationship with its parts. As in logic the proposition can never determine the meta proposition, so also in matters of control the smaller context can never determine the larger. I have remarked (e.g., when discussing the phenomena of phenotypic compensation) that in hierarchies of logical typing there is often some sort of change of sign at each level, when the levels are related to each other in such a way as to create a self-corrective system. This appears in a simple diagrammatic form in the initiatory hierarchy which I studied in a New Guinea tribe. The initiators are the natural enemies of the novices, because it is their task to bully the novices into shape. The men who initiated the present initiators now have a role of criticizing what is now being done in the initiation ceremonies, and this makes them the natural allies of the present novices. And so on. Something of the same sort also occurs in American college fraternities, where juniors tend to be allied with freshmen and seniors with sophomores. This gives us a view of the world which is still almost unexplored. But some of its complexities may be suggested by a very crude and imperfect analogy. I think that the functioning of such hierarchies may be compared with the business of trying to back a truck to which one or more trailers are attached. Each segmentation of such a system denotes a reversal of sign, and each added segment denotes a drastic decrease in the amount of control that can be exerted by the driver of the truck. If the system is parallel to the right-hand side of the road, and he wants the trailer immediately behind him to approach the right-hand side, he must turn his front wheels to the left. This will guide the rear of the truck away from the right-hand side of the road so that the front of the trailer is pulled over to its left. This will now cause the rear of the trailer to point toward the right. And so on. As anybody who has attempted this will know, the amount of available control falls off rapidly. To back a truck with one trailer is already difficult because there is only a limited range of angles within which the control can be exerted. If the trailer is in line, or almost in line, with the truck, the control is easy, but as the angle between trailer and truck diminishes, a point is reached at which control is lost and the attempt to exert it only results in jackknifing of the system. When we consider the problem of controlling a second trailer, the threshold for jackknifing is drastically reduced, and control becomes, therefore, almost negligible. As I see it, the world is made up of a very complex net-work (rather than a chain) of entities which have this sort of relationship to each other, but with this difference, that many of the entities have their own supplies of energy and perhaps even their own ideas of where they would like to go. In such a world the problems of control become more akin to art than to science, not merely because we tend to think of the difficult and the unpredictable as contexts for art but also because the results of error are likely to be ugliness. Let me then conclude with a warning that we social scientists would do well to hold back our eagerness to control that world which we so imperfectly understand. The fact of our imperfect understanding should not be allowed to feed our anxiety and so increase the need to control. Rather, our studies could be inspired by a more ancient, but today less honored, motive: a curiosity about the world of which we are part. The rewards of such work are not power but beauty. It is a strange fact that every great scientific advance—not least the advances which Newton achieved—has been elegant. Additional References W. R. Ashby, Design for a Brain, New York, John Wiley & Sons, Inc., 1952. -----, Introduction to Cybernetics, New York and London, John Wiley & Sons, Inc., 1956. G. Bateson, D. D. Jackson, J. Haley, and J. H. Weakland, “Toward a Theory of Schizophrenia,” Behavioral Science, 1956, 1: 251-64. G. Bateson, “Cultural Problems Posed by a Study of Schizophrenic Process,” Symposium on Schizophrenia, an Integrated Approach, by Alfred Auerback, M. D., ed., American Psychiatric Association, Symposium of the Hawaiian Divisional Meeting, 1958, New York, Ronald Press, 1959. -----, “The New Conceptual Frames for Behavioral Re-search,” Proceedings of the Sixth Annual Psychiatric Conference at the New Jersey Neuro- Psychiatric Institute, Princeton, 1958, pp. 54-71. -----, “The Group Dynamics of Schizophrenia,” Chronic Schizophrenia, L. Appleby, J. M. Scher, and J. H. Cummings, eds., Glencoe, Ill., The Free Press, 1960. -----, “Social Planning and the Concept of Deutero- Learning,” Relation to the Democratic Way of Life, Conference on Science, Philosophy and Religion, Second Symposium, led by L. Bryson and L. Finkelstein, New York, Harper & Bros., 1942. -----, Naven, a Survey of Problems Suggested by a Composite Picture of Culture of a New Guinea Tribe Drawn from Three Points of View, Ed. 2, Stanford, Calif., Stanford University Press, 1958. S. Butler, Thought and Language, 1890, published in the Shrewsbury Edition of the works of Samuel Butler, 1925, vol. xix. -----, Luck or Cunning as the Main Means of Organic Modification, London, Trubner, 1887. C. D. Darlington, “The Origins of Darwinism,” Scientific American, 1959, 200: 60-65. C. Darwin, On the Origin of Species, by Means of Natural Selection, London, Murray, 1859. C. C. GiIlispie, “Lamarck and Darwin in the History of Science,” American Scientist, 1958, 46: 388-409. J. Stroud, “Psychological Moment in Perception-Discussion,” Cybernetics: Circular Causal and Feedback Mechanisms in Biological and Social Systems, Transactions of the Sixth Conference, H. Von Foerster, et al:, eds., New York, Josiah Macy; Jr. Foundation, 1949, pp. 27-63. C. H. Waddington, The Strategy of the Genes, London, George Allen & Unwin, Ltd., 1957. -----, “The Integration of Gene-Controlled Processes and Its Bearing on Evolution,” Caryologia, Supplement, 1954, pp. 232-45. -----, “Genetic Assimilation of an Acquired Character,” Evolution, 1953, 7: 118- 26. A. Weismann, Essays upon Heredity, authorized translation, E. B. Poulton, et al., eds., Oxford, Clarendon Press, 1889. Double Bind, 1969 [57] Double bind theory was, for me, an exemplification of how to think about such matters and, in this aspect at least, the whole business is worth some re-examination. Sometimes—often in science and always in art—one does not know what the problems were till after they have been solved. So perhaps it will be useful to state retrospectively what problems were solved for me by double bind theory. First there was the problem of reification. Clearly there are in the mind no objects or events—no pigs, no coconut palms, and no mothers. The mind contains only transforms, percepts, images, etc., and rules for making these transforms, percepts, etc. In what form these rules exist we do not know, but presumably they are embodied in the very machinery which creates the transforms. The rules are certainly not commonly explicit as conscious “thoughts.” In any case, it is nonsense to say that a man was frightened by a lion, because a lion is not an idea. The man makes an idea of the lion. The explanatory world of substance can invoke no differences and no ideas but only forces and impacts. And, per contra, the world of form and communication invokes no things, forces, or impacts but only differences and ideas. (A difference which makes a difference is an idea. It is a “bit,” a unit of information.) But these things I learned only later—was enabled to learn them by double bind theory. And yet, of course, they are implicit in the theory which could hardly have been created without them. Our original paper on the double bind contains numerous errors due simply to our having not yet articulately examined the reification problem. We talk in that paper as though a double bind were a something and as though such some-things could be counted. Of course that’s all nonsense. You cannot count the bats in an inkblot because there are none. And yet a man—if he be “bat-minded”—may “see” several. But are there double binds in the mind? The question is not trivial. As there are in the mind no coconuts but only percepts and transforms of coconuts, so also, when I perceive (consciously or unconsciously) a double bind in my boss’ behavior, I acquire in my mind no double bind but only a percept or transform of a double bind. And that is not what the theory is about. We are talking then about some sort of tangle in the rules for making the transforms and about the acquisition or cultivation of such tangles. Double bind theory asserts that there is an experiential component in the determination or etiology of schizophrenic symptoms and related behavioral patterns, such as humor, art, poetry, etc. Notably the theory does not distinguish between these subspecies. Within its terms there is nothing to determine whether a given individual shall become a clown, a poet, a schizophrenic, or some combination of these. We deal not with a single syndrome but with a genus of syndromes, most of which are not conventionally regarded as pathological. Let me coin the word “transcontextual” as a general term for this genus of syndromes. It seems that both those whose life is enriched by trans-contextual gifts and those who are impoverished by transcontextual confusions are alike in one respect: for them there is always or often a “double take.” A falling leaf, the greeting of a friend, or a “primrose by the river’s brim” is not “just that and nothing more.” Exogenous experience may be framed in the contexts of dream, and internal thought may be projected into the contexts of the external world. And so on. For all this, we seek a partial explanation in learning and experience. There must, of course, also be genetic components in the etiology of the transcontextual syndromes. These would expectably operate at levels more abstract than the experiential. For example, genetic components might determine skill in learning to be transcontextual or (more abstractly) the potentialities for acquiring this skill. Or, conversely, the genome might determine skills in resisting transcontextual pathways, or the potentiality for acquiring this latter skill. (Geneticists have paid very little attention to the necessity of defining the logical typing of messages carried by DNA.) In any case, the meeting point where the genetic determination meets the experiential is surely quite abstract, and this must be true even though the embodiment of the genetic message be a single gene. (A single bit of information—a single difference—may be the yes-or-no answer to a question of any degree of complexity, at any level of abstraction. ) Current theories which propose (for “schizophrenia”) a single dominant gene of “low penetrance” seem to leave the field open for any experiential theory which would indicate what class of experiences might cause the latent potentiality to appear in the phenotype. I must confess however that these theories seem to me of little interest until the proponents try to specify what components of the complex process of determining “schizophrenia” are provided by the hypothetical gene. To identify these components must be a subtractive process. Where the contribution of environment is large, the genetics cannot be investigated until the environmental effect has been identified and can be controlled. But sauce for the goose is also sauce for the gander, and what is said above about geneticists places an obligation upon me to make clear what components of transcontextual process could be provided by double bind experience. It is appropriate therefore to re-examine the theory of deuterolearning upon which double bind theory is based. All biological systems (organisms and social or ecological organizations of organisms) are capable of adaptive change. But adaptive change takes many forms, such as response, learning, ecological succession, biological evolution, cultural evolution, etc., according to the size and complexity of the system which we choose to consider. Whatever the system, adaptive change depends upon feedback loops, be it those provided by natural selection or those of individual reinforcement. In all cases, then, there must be a process of trial and error and a mechanism of comparison. But trial and error must always involve error, and error is always biologically and/or psychically expensive. It follows therefore that adaptive change must always be hierarchic. There is needed not only that first-order change which suits the immediate environmental (or physiological) demand but also second-order changes which will reduce the amount of trial and error needed to achieve the first-order change. And so on. By superposing and interconnecting many feedback loops, we (and all other biological systems) not only solve particular problems but also form habits which we apply to the solution of classes of problems. We act as though a whole class of problems could be solved in terms of assumptions or premises, fewer in number than the members of the class of problems. In other words, we (organisms) learn to learn, or in the more technical phrase, we deutero-learn. But habits are notoriously rigid and their rigidity follows as a necessary corollary of their status in the hierarchy of adaptation. The very economy of trial and error which is achieved by habit formation is only possible because habits are comparatively “hard programmed,” in the engineers’ phrase. The economy consists precisely in not re-examining or rediscovering the premises of habit every time the habit is used. We may say that these premises are partly “unconscious”, or—if you please—that a habit of not examining them is developed. Moreover, it is important to note that the premises of habit are almost necessarily abstract. Every problem is in some degree different from every other and its description or representation in the mind will therefore contain unique propositions. Clearly to sink these unique propositions to the level of premises of habit would be an error. Habit can deal successfully only with propositions which have general or repetitive truth, and these are commonly of a relatively high order of abstraction. [58] Now the particular propositions which I believe to be important in the determination of the transcontextual syndromes are those formal abstractions which describe and determine interpersonal relationship. I say “describe and determine,” but even this is inadequate. Better would be to say that the relationship is the exchange of these messages; or that the relationship is immanent in these messages. Psychologists commonly speak as if the abstractions of relationship (“dependency,” “hostility,” “love,” etc.) were real things which are to be described or “expressed” by messages. This is epistemology backwards: in truth, the messages constitute the relationship, and words like `.`dependency” are verbally coded descriptions of patterns immanent in the combination of exchanged messages. As has already been mentioned, there are no “things” in the mind—not even “dependency.” We are so befuddled by language that we cannot think straight, and it is convenient, sometimes, to remember that we are really mammals. The epistemology of the “heart” is that of any nonhuman mammal. The cat does not say “milk”; she simply acts out (or is) her end of an interchange, the pattern of which we in language would call “dependency.” But to act or be one end of a pattern of interaction is to propose the other end. A context is set for a certain class of response. This weaving of contexts and of messages which propose context—but which, like all messages whatsoever, have “meaning” only by virtue of context—is the subject matter of the so-called double bind theory. The matter may be illustrated by a famous and formally correct [59] botanical analogy. Goethe pointed out 150 years ‘ ago that there is a sort of syntax or grammar in the anatomy of flowering plants. A “stem” is that which bears “leaves”; a “leaf” is that which has a bud in its axil; a bud is a stem which originates in the axil of a leaf; etc. The formal (i.e., the communicational) nature of each organ is determined by its contextual status—the context in which it occurs and the context which it sets for other parts. I said above that double bind theory is concerned with the experiential component in the genesis of tangles in the rules or premises of habit. I now go on to assert that experienced breaches in the weave of contextual structure are in fact “double binds” and must necessarily (if they contribute at all to the hierarchic processes of learning and adaptation) promote what I am calling transcontextual syndromes. Consider a very simple paradigm: a female porpoise (Steno bredanensis) is trained to accept the sound of the trainer’s whistle as a “secondary reinforcement.” The whistle is expectably followed by food, and if she later repeats what she was doing when the whistle blew, she will expectably again hear the whistle and receive food. This porpoise is now used by the trainers to demonstrate “operant conditioning” to the public. When she enters the exhibition tank, she raises her head above surface, hears the whistle and is fed. She then raises her head again and is again reinforced. Three repetitions of this sequence is enough for the demonstration and the porpoise is then sent off-stage to wait for the next performance two hours later. She has learned some simple rules which relate her actions, the whistle, the exhibition tank, and the trainer into a pattern—a contextual structure, a set of rules for how to put the in-formation together. But this pattern is fitted only for a single episode in the exhibition tank. She must break that pattern to deal with the class of such episodes. There is a larger context of contexts which will put her in the wrong. At the next performance, the trainer again wants to demonstrate “operant conditioning,” but to do this she must pick on a different piece of conspicuous behavior. When the porpoise comes on stage, she again raises her head. But she gets no whistle. The trainer waits for the next piece of conspicuous behavior—likely a tail flap, which is a common expression of annoyance. This behavior is then rein-forced and repeated. But the tail flap was, of course, not rewarded in the third performance. Finally the porpoise learned to deal with the context of contexts—by offering a different or new piece of conspicuous behavior whenever she came on stage. All this had happened in the free natural history of the relationship between porpoise and trainer and audience. The sequence was then repeated experimentally with a new porpoise and carefully recorded. [60] Two points from this experimental repeat of the sequence must be added: First, that it was necessary (in the trainer’s judgment) to break the rules of the experiment many times. The experience of being in the wrong was so disturbing to the porpoise that in order to preserve the relationship between porpoise and trainer (i.e., the context of context of context) it was necessary to give many reinforcements to which the porpoise was not entitled. Second, that each of the first fourteen sessions was characterized by many futile repetitions of whatever behavior had been reinforced in the immediately previous session. Seemingly only by “accident” did the animal provide a piece of different behavior. In the time-out between the fourteenth and fifteenth sessions, the porpoise appeared to be much excited, and when she came on stage for the fifteenth session she put on an elaborate performance including eight conspicuous pieces of behavior of which four were entirely new—never before observed in this species of animal. The story illustrates, I believe, two aspects of the genesis of a transcontextual syndrome: First, that severe pain and maladjustment can be induced by putting a mammal in the wrong regarding its rules for making sense of an important relationship with another mammal. And second, that if this pathology can be warded off or resisted, the total experience may promote creativity. Bibliography G. Bateson, “Social Planning and the Concept of Deutero-Learning,” Science, Philosophy and Religion; Second Symposium, L. Bryson and L. Finkelstein, eds., New York, Conference on Science, Philosophy and Religion in their Relation to the Democratic Way of Life, Inc., 1942. -----, “Minimal Requirements for a Theory of Schizophrenia,” A.M.A. Archives of General Psychiatry, 1960, 2: 477-91. -----, Perceval’s Narrative, A Patient’s Account of his Psychosis, 1830-1832, edited and with an introduction by Gregory Bateson, Stanford, Calif., Stanford University Press, 1961. -----, “Exchange of Information about Patterns of Human Behavior,” Information Storage and Neural Control; Tenth Annual Scientific Meeting of the Houston Neurological Society, W. S. Fields and W. Abbott, eds., Springfield, Ill., Charles C. Thomas, 1963. -----, “The Role of Somatic Change in Evolution,” Evolution, 1963, 17: 529-39. The Logical Categories of Learning and Communication [61] All species of behavioral scientists are concerned with “learning” in one sense or another of that word. Moreover, since “learning” is a communicational phenomenon, all are affected by that cybernetic revolution in thought which has occurred in the last twenty-five years. This revolution was triggered by the engineers and communication theorists but has older roots in the physiological work of Cannon and Claude Bernard, in the physics of Clarke Maxwell, and in the mathematical philosophy of Russell and Whitehead. Insofar as behavioral scientists still ignore the problems of Principia Mathematica, [62] they can claim approximately sixty years of obsolescence. It appears, however, that the barriers of misunderstanding which divide the various species of behavioral scientists can be illuminated (but not eliminated) by an application of Russell’s Theory of Logical Types to the concept of “learning” with which all are concerned. To attempt this illumination will be a purpose of the present essay. First, it is appropriate to indicate the subject matter of the Theory of Logical Types: the theory asserts that no class can, in formal logical or mathematical discourse, be a member of itself; that a class of classes cannot be one of the classes which are its members; that a name is not the thing named; that “John Bateson” is the class of which that boy is the unique member; and so forth. These assertions may seem trivial and even obvious, but we shall see later that it is not at all unusual for the theorists of behavioral science to commit errors which are precisely analogous to the error of classifying the name with the thing named—or eating the menu card instead of the dinner—an error of logical typing. Somewhat less obvious is the further assertion of the theory: that a class cannot be one of those items which are correctly classified as its nonmembers. If we classify chairs together to constitute the class of chairs, we can go on to note that tables and lamp shades are members of a large class of “nonchairs,” but we shall commit an error in formal discourse if we count the class of chairs among the items within the class of nonchairs. Inasmuch as no class can be a member of itself, the class of nonchairs clearly cannot be a nonchair. Simple considerations of symmetry may suffice to convince the nonmathematical reader: (a) that the class of chairs is of the same order of abstraction (i.e., the same logical type) as the class of nonchairs; and further, (b) that if the class of chairs is not a chair, then, correspondingly, the class of nonchairs is not a nonchair. Lastly, the theory asserts that if these simple rules of formal discourse are contravened, paradox will be generated and the discourse vitiated. The theory, then, deals with highly abstract matters and was first derived within the abstract world of logic. In that world, when a train of propositions can be shown to generate a paradox, the entire structure of axioms, theorems, etc., involved in generating that paradox is thereby negated and reduced to nothing. It is as if it had never been. But in the real world (or at least in our descriptions of it), there is always time, and nothing which has been can ever be totally negated in this way. The computer which encounters a paradox (due to faulty programming) does not vanish away. The “if… then…” of logic contains no time. But in the computer, cause and effect are used to simulate the “if… then…” of logic; and all sequences of cause and effect necessarily involve time. (Conversely, we may say that in scientific explanations the “if… then…” of logic is used to simulate the “if… then…” of cause and effect.) The computer never truly encounters logical paradox, but only the simulation of paradox in trains of cause and effect. The computer therefore does not fade away. It merely oscillates. In fact, there are important differences between the world of logic and the world of phenomena, and these differences must be allowed for whenever we base our arguments upon the partial but important analogy which exists between them. It is the thesis of the present essay that this partial analogy can provide an important guide for behavioral scientists in their classification of phenomena related to learning. Precisely in the field of animal and mechanical communication something like the theory of types must apply. Questions of this sort, however, are not often discussed in zoological laboratories, anthropological field camps, or psychiatric conventions, and it is necessary therefore to demonstrate that these abstract considerations are important to behavioral scientists. Consider the following syllogism:
Be it said at once: first, that empirical data show that the conclusion (c) is untrue; and second, that if the conclusion (c) were demonstrably true, then either (a) or (b) would be untrue. [63] Logic and natural history would be better served by an expanded and corrected version of the conclusion (c) some-what as follows:
The whole matter turns on whether the distinction between a class and its members is an ordering principle in the behavioral phenomena which we study. In less formal language: you can reinforce a rat (positively or negatively) when he investigates a particular strange object, and he will appropriately learn to approach or avoid it. But the very purpose of exploration is to get information about which objects should be approached and which avoided. The discovery that a given object is dangerous is therefore a success in the business of getting information. The success will not discourage the rat from future exploration of other strange objects. A priori it can be argued that all perception and all response, all behavior and all classes of behavior, all learning and all genetics, all neurophysiology and endocrinology, all organization and all evolution—one entire subject matter must be regarded as communicational in nature, and there-fore subject to the great generalizations or “laws” which apply to communicative phenomena. We therefore are warned to expect to find in our data those principles of order which fundamental communication theory would pro-pose. The Theory of Logical Types, Information Theory, and so forth, are expectably to be our guides. The “Learning” of Computers, Rats, and Men The word “learning” undoubtedly denotes change of some kind. To say what kind of change is a delicate matter. However, from the gross common denominator, “change,” we can deduce that our descriptions of “learning” will have to make the same sort of allowance for the varieties of logical type which has been routine in physical science since the days of Newton. The simplest and most familiar form of change is motion, and even if we work at that very simple physical level we must structure our descriptions in terms of “position or zero motion,” “constant velocity,” “acceleration,” “rate of change of acceleration,” and so on. [64] Change denotes process. But processes are themselves subject to “change.” The process may accelerate, it may slow down, or it may undergo other types of change such that we shall say that it is now a “different” process. These considerations suggest that we should begin the ordering of our ideas about “learning” at the very simplest level. Let us consider the case of specificity of response, or zero learning. This is the case in which an entity shows minimal change in its response to a repeated item of sensory input. Phenomena which approach this degree of simplicity occur in various contexts:
In ordinary, nontechnical parlance, the word “learn” is often applied to what is here called “zero learning,” i.e., to the simple receipt of information from an external event, in such a way that a similar event at a later (and appropriate) time will convey the same information: I “learn” from the factory whistle that it is twelve o’clock. It is also interesting to note that within the frame of our definition many very simple mechanical devices show at least the phenomenon of zero learning. The question is not, “Can machines learn?” but what level or order of learning does a given machine achieve? It is worth looking at an extreme, if hypothetical, case: The “player” of a Von Neumannian game is a mathematical fiction, comparable to the Euclidean straight line in geometry or the Newtonian particle in physics. By definition, the “player” is capable of all computations necessary to solve whatever problems the events of the game may present; he is incapable of not performing these computations whenever they are appropriate; he always obeys the findings of his computations. Such a “player” receives information from the events of the game and acts appropriately upon that information. But his learning is limited to what is here called zero learning. An examination of this formal fiction will contribute to our definition of zero learning. The “player” may receive, from the events of the game, information of higher or lower logical type, and he may use this information to make decisions of higher or lower type. That is, his decisions may be either strategic or tactical, and he can identify and respond to indications of both the tactics and the strategy of his opponent. It is, how-ever, true that in Von Neumann’s formal definition of a “game,” all problems which the game may present are conceived as computable, i.e., while the game may contain problems and information of many different logical types, the hierarchy of these types is strictly finite. It appears then that a definition of zero learning will not depend upon the logical typing of the information received by the organism nor upon the logical typing of the adaptive decisions which the organism may make. A very high (but finite) order of complexity may characterize adaptive behavior based on nothing higher than zero learning.
If we assume that, in the name of this learning process, the word “error” means what we meant it to mean when we said that the “player” is incapable of error, then “trial and error” is excluded from the repertoire of the Von Neumannian player. In fact, the Von Neumannian “player” forces us to a very careful examination of what we mean by “trial and error” learning, and indeed what is meant by “learning” of any kind. The assumption regarding the meaning of the word “error” is not trivial and must now be examined. There is a sense in which the “player” can be wrong. For example, he may base a decision upon probabilistic considerations and then make that move which, in the light of the limited available information, was most probably right. When more information becomes available, he may discover that that move was wrong. But this discovery can contribute nothing to his future skill. By definition, the player used correctly all the available information. He estimated the probabilities correctly and made the move which was most probably correct. The discovery that he was wrong in the particular instance can have no bearing upon future in-stances. When the same problem returns at a later time, he will correctly go through the same computations and reach the same decision. Moreover, the set of alternatives among which he makes his choice will be the same set—and correctly so. In contrast, an organism is capable of being wrong in a number of ways of which the “player” is incapable. These wrong choices are appropriately called “error” when they are of such a kind that they would provide information to the organism which might contribute to his future skill. These will all be cases in which some of the available information was either ignored or incorrectly used. Various species of such profitable error can be classified. Suppose that the external event system contains details which might tell the organism: (a) from what set of alternatives he should choose his next move; and (b) which member of that set he should choose. Such a situation permits two orders of error: The organism may use correctly the information which tells him from what set of alternatives he should choose, but choose the wrong alternative within this set; or He may choose from the wrong set of alternatives. (There is also an interesting class of cases in which the sets of alternatives contain common members. It is then possible for the organism to be “right” but for the wrong reasons. This form of error is inevitably self-reinforcing.) If now we accept the overall notion that all learning (other than zero learning) is in some degree stochastic (i.e., contains components of “trial and error”), it follows that an ordering of the processes of learning can be built upon an hierarchic classification of the types of error which are to be corrected in the various learning processes. Zero learning will then be the label for the immediate base of all those acts (simple and complex) which are not subject to correction by trial and error. Learning I will be an appropriate label for the revision of choice within an unchanged set of alternatives; Learning II will be the label for the revision of the set from which the choice is to be made; and so on. Following the formal analogy provided by the “laws” of motion (i.e., the “rules” for describing motion), we now look for the class of phenomena which are appropriately described as changes in zero learning (as “motion” describes change of position). These are the cases in which an entity gives at Time 2 a different response from what it gave at Time 1, and again we encounter a variety of cases variously related to experience, physiology, genetics, and mechanical process: (a) There is the phenomenon of habituation—the change from responding to each occurrence of a repeated event to not overtly responding. There is also the extinction or loss of habituation, which may occur as a result of a more or less long gap or other interruption in the sequence of repetitions of the stimulus event. (Habituation is of especial interest. Specificity of response, which we are calling zero learning, is characteristic of all protoplasm, but it is interesting to note that “habituation” is perhaps the only form of Learning I which living things can achieve without a neural circuit.) The most familiar and perhaps most studied case is that of the classical Pavlovian conditioning. At Time 2 the dog salivates in response to the buzzer; he did not do this at Time 1. (b) There is the “learning” which occurs in contexts of instrumental reward and instrumental avoidance. There is the phenomenon of rote learning, in which an item in the behavior of the organism becomes a stimulus for another item of behavior. There is the disruption, extinction, or inhibition of “completed” learning which may follow change or absence of reinforcement. In a word, the list of Learning I contains those items which are most commonly called “learning” in the psycho-logical laboratory. Note that in all cases of Learning I, there is in our description an assumption about the “context.” This assumption must be made explicit. The definition of Learning I assumes that the buzzer (the stimulus) is somehow the “same” at Time 1 and at Time 2. And this assumption of “sameness” must also delimit the “context,” which must (theoretically) be the same at both times. It follows that the events which occurred at Time 1 are not, in our description; included in our definition of the context at Time 2, because to include them would at once create a gross difference between “con-text at Time 1” and “context at Time 2.” (To paraphrase Heraclitus: “No man can go to bed with the same girl for the first time twice.”) The conventional assumption that context can be repeated, at least in some cases, is one which the writer adopts in this essay as a cornerstone of the thesis that the study of behavior must be ordered according to the Theory of Logical Types. Without the assumption of repeatable context (and the hypothesis that for the organisms which we study the sequence of experience is really somehow punctuated in this manner), it would follow that all “learning” would be of one type: namely, all would be zero learning. Of the Pavlovian experiment, we would simply say that the dog’s neural circuits contain “soldered in” from the beginning such characteristics that in Context A at Time 1 he will not salivate, and that in the totally different Context B at Time 2 he will salivate. What previously we called “learning” we would now describe as “discrimination” between the events of Time 1 and the events of Time 1 plus Time 2. It would then follow logically that all questions of the type, “Is this behavior `learned’ or `innate’?” should be answered in favor of genetics. We would argue that without the assumption of repeat-able context, our thesis falls to the ground, together with the whole general concept of “learning.” If, on the other hand, the assumption of repeatable context is accepted as somehow true of the organisms which we study, then the case for logical typing of the phenomena of learning necessarily stands, because the notion “context” is itself subject to logical typing. Either we must discard the notion of “context,” or we retain this notion and, with it, accept the hierarchic series—stimulus, context of stimulus, context of context of stimulus, etc. This series can be spelled out in the form of a hierarchy of logical types as follows: Stimulus is an elementary signal, internal or external. Context of stimulus is a metamessage which classifies the elementary signal. Context of context of stimulus is a meta-metamessage which classifies the metamessage. And so on. The same hierarchy could have been built up from the notion of “response” or the notion of “reinforcement.” Alternatively, following up the hierarchic classification of errors to be corrected by stochastic process or “trial and error,” we may regard “context” as a collective term for all those events which tell the organism among what set of alternatives he must make his next choice. At this point it is convenient to introduce the term “con-text marker.” An organism responds to the “same” stimulus differently in differing contexts, and we must therefore ask about the source of the organisms’s information. From what percept does he know that Context A is different from Context B? In many instances, there may be no specific signal or label which will classify and differentiate the two contexts, and the organism will be forced to get his information from the actual congeries of events that make up the context in each case. But, certainly in human life and probably in that of many other organisms, there occur signals whose major function is to classify contexts. It is not unreasonable to sup-pose that when the harness is placed upon the dog, who has had prolonged training in the psychological laboratory, he knows from this that he is now embarking upon a series of contexts of a certain sort. Such a source of information we shall call a “context marker,” and note immediately that, at least at the human level, there are also “markers of contexts of contexts.” For example: an audience is watching Hamlet on the stage, and hears the hero discuss suicide in the con-text of his relationship with his dead father, Ophelia, and the rest. The audience members do not immediately telephone for the police because they have received information about the context of Hamlet’s context. They know that it is a “play” and have received this information from many “markers of context of context”—the playbills, the seating arrangements, the curtain, etc., etc. The “King,” on the other hand, when he lets his conscience be pricked by the play within the play, is ignoring many “markers of context of context.” At the human level, a very diverse set of events falls within the category of “context markers.” A few examples are here listed:
These, however, are examples from the social life of a highly complex organism, and it is more profitable at this stage to ask about the analogous phenomena at the pre-verbal level. A dog may see the leash in his master’s hand and act as if he knows that this indicates a walk; or he may get in-formation from the sound of the word “walk” that this type of context or sequence is coming. When a rat starts a sequence of exploratory activities, does he do so in response to a “stimulus?” Or in response to a context? Or in response to a context marker? These questions bring to the surface formal problems about the Theory of Logical Types which must be discussed. The theory in its original form deals only with rigorously digital communication, and it is doubtful how far it may be applied to analogue or iconic systems. What we are here calling “context markers” may be digital (e.g., the word “walk” mentioned above) ; or they may be analogue signals — a briskness in the master’s movements may indicate that a walk is pending; or some part of the coming context may serve as a marker (the leash as a part of the walk) ; or in the extreme case, the walk itself in all its complexity may stand for itself, with no label or marker between the dog and the experience. The perceived event itself may communicate its own occurrence. In this case, of course, there can be no error of the “menu card” type. Moreover, no paradox can be generated because in purely analogue or iconic communication there is no signal for “not.” There is, in fact, almost no formal theory dealing with analogue communication and, in particular, no equivalent of Information Theory or Logical Type Theory. This gap in formal knowledge is inconvenient when we leave the rarified world of logic and mathematics and come face to face with the phenomena of natural history. In the natural world, communication is rarely either purely digital or purely analogic. Often discrete digital pips are combined together to make analogic pictures as in the printer’s halftone block; and sometimes, as in the matter of context markers, there is a continuous gradation from the ostensive through the iconic to the purely digital. At the digital end of this scale all the theorems of information theory have their full force, but at the ostensive and analogic end they are meaningless. It seems also that while much of the behavioral communication of even higher mammals remains ostensive or analogic, the internal mechanism of these creatures has become digitalized at least at the neuronal level. It would seem that analogic communication is in some sense more primitive than digital and that there is a broad evolutionary trend toward the substitution of digital for analogic mechanisms. This trend seems to operate faster in the evolution of internal mechanisms than in the evolution of external behavior. Recapitulating and extending what was said above:
This notion is not a mere tool of our description but contains the implicit hypothesis that for the organisms which we study, the sequence of life experience, action, etc., is somehow segmented or punctuated into subsequences or “contexts” which may be equated or differentiated by the organism. The distinction which is commonly drawn between perception and action, afferent and efferent, input and out-put, is for higher organisms in complex situations not valid. On the one hand, almost every item of action may be re-ported either by external sense or endoceptive mechanism to the C.N.S., and in this case the report of this item be-comes an input. And, on the other hand, in higher organisms, perception is not by any means a process of mere passive receptivity but is at least partly determined by efferent control from higher centers. Perception, notoriously, can be changed by experience. In principle, we must allow both for the possibility that every item of action or output may create an item of input; and that percepts may in some cases par-take of the nature of output. It is no accident that almost all sense organs are used for the emission of signals between organisms. Ants communicate by their antennae; dogs by the pricking of their ears; and so on. In principle, even in zero learning, any item of experience or behavior may be regarded as either “stimulus” or “response” or as both, according to how the total sequence is punctuated. When the scientist says that the buzzer is the “stimulus” in a given sequence, his utterance implies an hypothesis about how the organism punctuates that sequence. In Learning I, every item of perception or behavior may be stimulus or response or reinforcement according to how the total sequence of interaction is punctuated. What has been said above has cleared the ground for the consideration of the next level or logical type of “learning” which we shall here call Learning II. Various terms have been proposed in the literature for various phenomena of this order. “Deutero-learning,” [65] “set learning,” [66] “learning to learn,” and “transfer of learning” may be mentioned. We recapitulate and extend the definitions so far given: Zero learning is characterized by specificity of response, which—right or wrong—is not subject to correction. Learning I is change in specificity of response by correction of errors of choice within a set of alternatives. Learning II is change in the process of Learning I, e.g., a corrective change in the set of alternatives from which choice is made, or it is a change in how the sequence of experience is punctuated. Learning III is change in the process of Learning II, e.g., a corrective change in the system of sets of alternatives from which choice is made. (We shall see later that to demand this level of performance of some men and some mammals is sometimes pathogenic.) Learning IV would be change in Learning III, but probably does not occur in any adult living organism on this earth. Evolutionary process has, however, created organisms whose ontogeny brings them to Level III. The combination of phylogenesis with ontogenesis, in fact, achieves Level IV. Our immediate task is to give substance to the definition of Learning II as “change in Learning I,” and it is for this that the ground has been prepared. Briefly, I believe that the phenomena of Learning II can all be included under the rubric of changes in the manner in which the stream of action and experience is segmented or punctuated into contexts together with changes in the use of context markers. The list of phenomena classified under Learning I includes a considerable (but not exhaustive) set of differently structured contexts. In classical Pavlovian contexts, the contingency pattern which describes the relation between “stimulus” (CS), animal’s action (CR), and reinforcement. (UCS ) is profoundly different from the contingency pattern characteristic of instrumental contexts of learning. In the Pavlovian case: If stimulus and a certain lapse of time: then reinforcement. In the Instrumental Reward case: If stimulus and a particular item of behavior: then reinforcement. In the Pavlovian case, the reinforcement is not contingent upon the animal’s behavior, whereas in the instrumental case, it is. Using this contrast as an example, we say that Learning II has occurred if it can be shown that experience of one or more contexts of the Pavlovian type results in the animal’s acting in some later context as though this, too, had the Pavlovian contingency pattern. Similarly, if past experience of instrumental sequences leads an animal to act in some later context as though expecting this also to be an instrumental context, we shall again say that Learning II has occurred. When so defined, Learning II is adaptive only if the animal happens to be right in its expectation of a given contingency pattern, and in such a case we shall expect to see a measurable learning to learn. It should require fewer trials in the new context to establish “correct” behavior. If, on the other hand, the animal is wrong in his identification of the later contingency pattern, then we shall expect a delay of Learning I in the new context. The animal who has had prolonged experience of Pavlovian contexts might never get around to the particular sort of trial-and-error behavior necessary to discover a correct instrumental response. There are at least four fields of experimentation where Learning II has been carefully recorded: (a) In human rote learning. Hull [67] carried out very careful quantitative studies which revealed this phenomenon, and constructed a mathematical model which would simulate or explain the curves of Learning I which he recorded. He also observed a second-order phenomenon which we may call “learning to rote learn” and published the curves for this phenomenon in the Appendix to his book. These curves were separated from the main body of the book because, as he states, his mathematical model (of Rote Learning I) did not cover this aspect of the data. It is a corollary of the theoretical position which we here take that no amount of rigorous discourse of a given logical type can “explain” phenomena of a higher type. Hull’s model acts as a touchstone of logical typing, automatically excluding from explanation phenomena beyond its logical scope. That this was so—and that Hull perceived it—is testimonial both to his rigor and to his perspicacity. What the data show is that for any given subject, there is an improvement in rote learning with successive sessions, asymptotically approaching a degree of skill which varied from subject to subject. The context for this rote learning was quite complex and no doubt appeared subjectively different to each learner. Some may have been more motivated by fear of being wrong, while others looked rather for the satisfactions of being right. Some would be more influenced to put up a good record as compared with the other subjects; others would be fascinated to compete in each session with their own previous showing, and so on. All must have had ideas (correct or incorrect) about the nature of the experimental setting, all must have had “levels of aspiration,” and all must have had previous experience of memorizing various sorts of material. Not one of Hull’s subjects could have come into the learning context uninfluenced by previous Learning II. In spite of all this previous Learning II, and in spite of genetic differences which might operate at this level, all showed improvement over several sessions. This improvement cannot have been due to Learning I because any recall of the specific sequence of syllables learned in the previous session would not be of use in dealing with the new sequence. Such recall would more probably be a hindrance. I submit, therefore, that the improvement from session to session can only be accounted for by some sort of adaptation to the context which Hull provided for rote learning. It is also worth noting that educators have strong opinions about the value (positive or negative) of training in rote learning. “Progressive” educators insist on training in “insight,” while the more conservative insist on rote and drilled recall. (b) The second type of Learning II which has been experimentally studied is called “set learning.” The concept and term are derived from Harlow and apply to a rather special case of Learning II. Broadly, what Harlow did was to present rhesus monkeys with more or less complex gestalten or “problems.” These the monkey had to solve to get a food reward. Harlow showed that if these problems were of similar “set,” i.e., contained similar types of logical complexity, there was a carry-over of learning from one problem to the next. There were, in fact, two orders of contingency patterns involved in Harlow’s experiments: first the overall pattern of instrumentalism (if the monkey solves the problem, then reinforcement); and second, the contingency patterns of logic within the specific problems. (c) Bitterman and others have recently set a fashion in experimentation with “reversal learning.” Typically in these experiments the subject is first taught a binary discrimination. When this has been learned to criterion, the meaning of the stimuli is reversed. If X initially “meant” R1, and Y initially meant R2, then after reversal X comes to mean R2, and, Y comes to mean R1. Again the trials are run to criterion when again the meanings are reversed. In these experiments, the crucial question is: Does the subject learn about the reversal? I.e., after a series of reversals, does the subject reach criterion in fewer trials than he did at the beginning of the series? In these experiments, it is conspicuously clear that the question asked is of logical type higher than that of questions about simple learning. If simple learning is based upon a set of trials, then reversal learning is based upon a set of such sets. The parallelism between this relation and Russell’s relation between “class” and “class of classes” is direct. (d) Learning II is also exemplified in the well-known phenomena of “experimental neurosis.” Typically an animal is trained, either in a Pavlovian or instrumental learning con-text, to discriminate between some X and some Y; e.g., between an ellipse and a circle. When this discrimination has been learned, the task is made more difficult: the ellipse is made progressively fatter and the circle is flattened. Finally a stage is reached at which discrimination is impossible. At this stage the animal starts to show symptoms of severe disturbance. Notably, (a) a naive animal, presented with a situation in which some X may (on some random basis) mean either A or B, does not show disturbance; and (b) the disturbance does not occur in absence of the many context markers characteristic of the laboratory situation. [68] It appears, then, that Learning II is a necessary preparation for the behavioral disturbance. The information, “This is a context for discrimination,” is communicated at the beginning of the sequence and underlined in the series of stages in which discrimination is made progressively more difficult. But when discrimination becomes impossible, the structure of the context is totally changed. The context markers (e.g., the smell of the laboratory and the experimental harness) now become misleading because the animal is in a situation which demands guesswork or gambling, not discrimination. The en-tire experimental sequence is, in fact, a procedure for putting the animal in the wrong at the level of Learning 11. In my phrase, the animal is placed in a typical “double bind,” which is expectably schizophrenogenic. [69] In the strange world outside the psychological laboratory, phenomena which belong to the category Learning II are a major preoccupation of anthropologists, educators, psychiatrists, animal trainers, human parents, and children. All who think about the processes which determine the character of the individual or the processes of change in human (or animal) relationship must use in their thinking a variety of assumptions about Learning II. From time to time, these people call in the laboratory psychologist as a consultant, and then are confronted with a linguistic barrier. Such barriers must always result when, for example, the psychiatrist is talking about Learning II, the psychologist is talking about Learning I, and neither recognizes the logical structure of the difference. Of the multitudinous ways in which Learning II emerges in human affairs, only three will be discussed in this essay: (a) In describing individual human beings, both the scientist and the layman commonly resort to adjectives descriptive of “character.” It is said that Mr. Jones is dependent, hostile, fey, finicky, anxious, exhibitionistic, narcissistic, passive, competitive, energetic, bold, cowardly, fatalistic, humorous, playful, canny, optimistic, perfectionist, careless, careful, casual, etc. In the light of what has already been said, the reader will be able to assign all these adjectives to their appropriate logical type. All are descriptive of (possible) results of Learning II, and if we would define these words more carefully, our definition will consist in laying down the contingency pattern of that context of Learning I which would expectably bring about that Learning II which would make the adjective applicable. We might say of the “fatalistic” man that the pattern of his transactions with the environment is such as he might have acquired by prolonged or repeated experience as subject of Pavlovian experiment; and note that this definition of “fatalism” is specific and precise. There are many other forms of “fatalism” besides that which is defined in terms of this particular context of learning. There is, for example, the more complex type characteristic of classical Greek tragedy where a man’s own action is felt to aid the inevitable working of fate. (b) In the punctuation of human interaction. The critical reader will have observed that the adjectives above which purport to describe individual character are really not strictly applicable to the individual but rather describe transactions between the individual and his material and human environment. No man is “resourceful” or “dependent” or “fatalistic” in a vacuum. His characteristic, whatever it be, is not his but is rather a characteristic of what goes on between him and something (or somebody) else. This being so, it is natural to look into what goes on between people, there to find contexts of Learning I which are likely to lend their shape to processes of Learning II. In such systems, involving two or more persons, where most of the important events are postures, actions, or utterances of the living creatures, we note immediately that the stream of events is commonly punctuated into contexts of learning by a tacit agreement between the persons regarding the nature of their relationship—or by context markers and tacit agreement that these context markers shall “mean” the same for both parties. It is instructive to attempt analysis of an ongoing interchange between A and B. We ask about any particular item of A’s behavior: Is this item a stimulus for B? Or is it a response of A to something B said earlier? Or is it a reinforcement of some item provided by B? Or is A, in this item, consummating a reinforcement for himself? Etc. Such questions will reveal at once that for many items of A’s behavior the answer is often quite unclear. Or if there be a clear answer, the clarity is due only to a tacit (rarely fully explicit) agreement between A and B as to the nature of their mutual roles, i.e., as to the nature of the contextual structure which they will expect of each other. If we look at such an exchange in the abstract: a1b1a2b2a3b3a4b4a5b5 where the a’s refer to items of A’s behavior, and the b’s to items of B’s behavior, we can take any a1 and construct around it three simple contexts of learning. These will be: (a1 b1 a1+ 1) , in which a1 is the stimulus for b1. (b1_1 a1 b1) , in which a1 is the response to b.1-1, which response B reinforces with b1. (a1_1 b1 _1 a1) , in which a1 is now A’s reinforcement of B’s b1-1, which was response to a1_1. It follows that a1 may be a stimulus for B or it may be A’s response to B, or it may be A’s reinforcement of B. Beyond this, however, if we consider the ambiguity of the notions “stimulus” and “response,” “afferent” and “efferent”—as discussed above—we note that any ai may also be a stimulus for A; it may be A’s reinforcement of self; or it may be A’s response to some previous behavior of his own, as is the case in sequences of rote behavior. This general ambiguity means in fact that the ongoing sequence of interchange between two persons is structured only by the person’s own perception of the sequence as a series of contexts, each context leading into the next. The particular manner in which the sequence is structured by any particular person will be determined by that person’s previous Learning II (or possibly by his genetics). In such a system, words like “dominant” and “submissive,” “succoring” and “dependent” will take on definable meaning as descriptions of segments of interchange. We shall say that “A dominates B” if A and B show by their behavior that they see their relationship as characterized by sequences of the type a1b1a2, where a1 is seen (by A and B) as a signal defining conditions of instrumental reward or punishment; b1 as a signal or act obeying these conditions; and a2 as a signal reinforcing b1. Similarly we shall say that “A is dependent on B” if their relationship is characterized by sequences a1b1a2,, where al is seen as a signal of weakness; b1 as a helping act; and a2 as an acknowledgement of b1. But it is up to A and B to distinguish (consciously or unconsciously or not at all) between “dominance” and “dependence.” A “command” can closely resemble a cry for “help.” (c) In psychotherapy, Learning II is exemplified most conspicuously by the phenomena of “transference.” Orthodox Freudian theory asserts that the patient will inevitably bring to the therapy room inappropriate notions about his relation-ship to the therapist. These notions (conscious or unconscious) will be such that he will act and talk in a way which would press the therapist to respond in ways which would resemble the patient’s picture of how some important other person (usually a parent) treated the patient in the near or distant past. In the language of the present paper, the patient will try to shape his interchange with the therapist according to the premises of his (the patient’s) former Learning II. It is commonly observed that much of the Learning II which determines a patient’s transference patterns and, in-deed, determines much of the relational life of all human beings, (a) dates from early infancy, and (b) is unconscious. Both of these generalizations seem to be correct and both need some explanation. It seems probable that these two generalizations are true because of the very nature of the phenomena which we are discussing. We suggest that what is learned in Learning II is a way of punctuating events. But a way of punctuating is not true or false. There is nothing contained in the propositions of this learning that can be tested against reality. It is like a picture seen in an inkblot; it has neither correctness nor incorrectness. It is only a way of seeing the inkblot. Consider the instrumental view of life. An organism with this view of life in a new situation will engage in trial-and-error behavior in order to make the situation provide a positive reinforcement. If he fails to get this reinforcement, his purposive philosophy is not thereby negated. His trial-and-error behavior will simply continue. The premises of “purpose” are simply not of the same logical type as the material facts of life, and therefore cannot easily be contradicted by them. The practitioner of magic does not unlearn his magical view of events when the magic does not work. In fact, the propositions which govern punctuation have the general characteristic of being self-validating. [70] What we term “con-text” includes the subject’s behavior as well as the external events. But this behavior is controlled by former Learning II and therefore it will be of such a kind as to mold the total context to fit the expected punctuation. In sum, this self-validating characteristic of the content of Learning II has the effect that such learning is almost ineradicable. It follows that Learning II acquired in infancy is likely to persist through life. Conversely, we must expect many of the important characteristics of an adult’s punctuation to have their roots in early infancy. In regard to the unconsciousness of these habits of punctuation, we observe that the “unconscious” includes not only repressed material but also most of the processes and habits of gestalt perception. Subjectively we are aware of our “dependency” but unable to say clearly how this pattern was constructed nor what cues were used in our creation of it. What has been said above about the self-validating character of premises acquired by Learning II indicates that Learning III is likely to be difficult and rare even in human beings. Expectably, it will also be difficult for scientists, who are only human, to imagine or describe this process. But it is claimed that something of the sort does from time to time occur in psychotherapy, religious conversion, and in other sequences in which there is profound reorganization of character. Zen Buddhists, Occidental mystics, and some psychiatrists assert that these matters are totally beyond the reach of language. But, in spite of this warning, let me begin to speculate about what must (logically) be the case. First a distinction must be drawn: it was noted above that the experiments in reversal learning demonstrate Learning II whenever there is measurable learning about the fact of reversal. It is possible to learn (Learning I) a given premise at a given time and to learn the converse premise at a later time without acquiring the knack of reversal learning. In such a case, there will be no improvement from one reversal to the next. One item of Learning I has simply re-placed another item of Learning I without any achievement of Learning II. If, on the other hand, improvement occurs with successive reversals, this is evidence for Learning II. If we apply the same sort of logic to the relation between Learning II and Learning III, we are led to expect that there might be replacement of premises at the level of Learning II without the achievement of any Learning III. Preliminary to any discussion of Learning III, it is there-fore necessary to discriminate between mere replacement without Learning III and that facilitation of replacement which would be truly Learning III. That psychotherapists should be able to aid their patients even in a mere replacement of premises acquired by Learning II is already no mean feat when we consider the self-validating character of such premises and their more or less unconscious nature. But that this much can be done there is no doubt. Within the controlled and protected setting of the therapeutic relationship, the therapist may attempt one or more of the following maneuvers: to achieve a confrontation between the premises of the patient and those of the therapist—who is carefully trained not to fall into the trap of validating the old premises; to get the patient to act, either in the therapy room or outside, in ways which will confront his own premises; to demonstrate contradiction among the premises which currently control the patient’s behavior; to induce in the patient some exaggeration or caricature (e.g., in dream or hypnosis) of experience based on his old premises. As William Blake noted, long ago, “Without Contraries is no progression.” (Elsewhere I have called these contradictions at level II “double binds.”) But there are always loopholes by which the impact of contradiction can be reduced. It is a commonplace of learning psychology that while the subject will learn (Learning I) more rapidly if he is reinforced every time he responds correctly, such learning will disappear rather rapidly if reinforcement ceases. If, on the other hand, reinforcement is only occasional, the subject will learn more slowly but the resulting learning will not easily be extinguished when reinforcement ceases altogether. In other words, the subject may learn (Learning 11) that the context is such that absence of reinforcement does not indicate that his response was wrong or inappropriate. His view of the context was, in fact, correct until the experimenter changed his tactics. The therapist must certainly so support or hedge the contraries by which the patient is driven that loopholes of this and other kinds are blocked. The Zen candidate who has been assigned a paradox (koan) must labor at his task “like a mosquito biting on an iron bar.” I have argued elsewhere (“Style, Grace, and Information in Primitive Art,” see p. 128) that an essential and necessary function of all habit formation and Learning I1 is an economy of the thought processes (or neural pathways) which are used for problem-solving or Learning I. The premises of what is commonly called “character”—the definitions of the “self” —save the individual from having to examine the abstract, philosophical, aesthetic, and ethical aspects of many sequences of life. “I don’t know whether it’s good music; I only know whether I like it.” But Learning III will throw these unexamined premises open to question and change. Let us, as was done above for Learning I and II, list some of the changes which we shall be willing to call Learning III. The individual might learn to form more readily those habits the forming of which we call Learning II. He might learn to close for himself the “loopholes” which would allow him to avoid Learning III. He might learn to change the habits acquired by Learning II. (d) He might learn that he is a creature which can and does unconsciously achieve Learning II. (e) He might learn to limit or direct his Learning II. If Learning II is a learning of the contexts of Learning I, then Learning III should be a learning of the contexts of those contexts. But the above list proposes a paradox. Learning III (i.e., learning about Learning II) may lead either to an increase in Learning II or to a limitation and perhaps a reduction of that phenomenon. Certainly it must lead to a greater flexibility in the premises acquired by the process of Learning II —a freedom from their bondage. I once heard a Zen master state categorically: “To become accustomed to anything is a terrible thing.” But any freedom from the bondage of habit must also denote a profound redefinition of the self. If I stop at the level of Learning II, “I” am the aggregate of those characteristics which I call my “character.” “I” am my habits of acting in context and shaping and perceiving the contexts in which I act. Selfhood is a product or aggregate of Learning II. To the degree that a man achieves Learning III, and learns to perceive and act in terms of the contexts of contexts, his “self” will take on a sort of irrelevance. The concept of “self” will no longer function as a nodal argument in the punctuation of experience. This matter needs to be examined. In the discussion of Learning II, it was asserted that all words like “dependency,” “pride,” “fatalism,” refer to characteristics of the self which are learned (Learning II) in sequences of relationship. These words are, in fact, terms for “roles” in relationships and refer to something artificially chopped out of interactive sequences. It was also suggested that the correct way to assign rigorous meaning to any such words is to spell out the formal structure of the sequence in which the named characteristic might have been learned. Thus the interactive sequence of Pavlovian learning was proposed as a paradigm for a certain sort of “fatalism,” etc. But now we are asking about the contexts of these con-texts of learning, i.e., about the larger sequences within which such paradigms are embedded. Consider the small item of Learning II which was mentioned above as providing a “loophole” for escape from Learning III. A certain characteristic of the self—call it “persistence”—is generated by experience in multiple sequences among which reinforcement is sporadic. We must now ask about the larger context of such sequences. How are such sequences generated? The question is explosive. The simple stylized experimental sequence of interaction in the laboratory is generated by and partly determines a network of contingencies which goes out in a hundred directions leading out of the laboratory into the processes by which psychological research is designed, the interactions between psychologists, the economics of re-search money, etc., etc. Or consider the same formal sequence in a more “natural” setting. An organism is searching for a needed or missing object. A pig is rooting for acorns, a gambler is feeding a slot machine hoping for a jackpot, or a man must find the key to his car. There are thousands of situations where living things must persist in certain sorts of behavior precisely because reinforcement is sporadic or improbable. Learning II will simplify the universe by handling these instances as a single category. But if Learning III be concerned with the contexts of these instances, then the categories of Learning II will be burst open. Or consider what the word “reinforcement” means at the various levels. A porpoise gets a fish from the trainer when he does what the trainer wants. At level I, the fact of the fish is linked with the “rightness” of the particular action. At level II, the fact of the fish confirms the porpoise’s under-standing of his (possibly instrumental or dependent) relationship with the trainer. And note that at this level, if the porpoise hates or fears the trainer, pain received from the latter may be a positive reinforcement confirming that hate. (“If it’s not the way I want it, I’ll prove it.”) But what of “reinforcement” at level III (for porpoise or for man)? If, as I have suggested above, the creature is driven to level III by “contraries” generated at level II, then we may expect that it is the resolving of these contraries that will constitute positive reinforcement at level III. Such resolution can take many forms. Even the attempt at level III can be dangerous, and some fall by the wayside. These are often labeled by psychiatry as psychotic, and many of them find themselves inhibited from using the first person pronoun. For others, more successful, the resolution of the contraries may be a collapsing of much that was learned at level II, revealing a simplicity in which hunger leads directly to eating, and the identified self is no longer in charge of organizing the behavior. These are the incorruptible innocents of the world. For others, more creative, the resolution of contraries reveals a world in which personal identity merges into all the processes of relationship in some vast ecology or aesthetics of cosmic interaction. That any of these can survive seems almost miraculous, but some are perhaps saved from being swept away on oceanic feeling by their ability to focus in on the minutiae of life. Every detail of the universe is seen as proposing a view of the whole. These are the people for whom Blake wrote the famous advice in the “Auguries of Innocence”:
The Role of Genetics in Psychology Whatever can be said about an animal’s learning or in-ability to learn has bearing upon the genetic make-up of the animal. And what has been said here about the levels of learning has bearing upon the whole interplay between genetic make-up and the changes which that individual can and must achieve. For any given organism, there is an upper limit beyond which all is determined by genetics. Planarians can probably not go beyond Learning I. Mammals other than man are probably capable of Learning II but incapable of Learning III. Man may sometimes achieve Learning III. This upper limit for any organism is (logically and presumably) set by genetic phenomena, not perhaps by individual genes or combinations of genes, but by whatever factors control the development of basic phylar characteristics. For every change of which an organism is capable, there is the fact of that capability. This fact may be genetically determined; or the capability may have been learned. If the latter, then genetics may have determined the capability of learning the capability. And so on. This is in general true of all somatic changes as well as of those behavioral changes which we call learning. A man’s skin tans in the sun. But where does genetics enter this picture? Does genetics completely determine his ability to tan? Or can some men increase their ability to tan? In the latter case, the genetic factors evidently have effect at a higher logical level. The problem in regard to any behavior is clearly not “Is it learned or is it innate?” but “Up to what logical level is learning effective and down to what level does genetics play a determinative or partly effective role?” The broad history of the evolution of learning seems to have been a slow pushing back of genetic determinism to levels of higher logical type. The model discussed in this paper assumes, tacitly, that the logical types can be ordered in the form of a simple, unbranching ladder. I believe that it was wise to deal first with the problems raised by such a simple model. But the world of action, experience, organization, and learning cannot be completely mapped onto a model which excludes propositions about the relation between classes of different logical type. If C1 is a class of propositions, and C2 is a class of propositions about the members of C1; C3 then being a class of propositions about the members of C2; how then shall we classify propositions about the relation between these classes? For example, the proposition “As members of C1 are to members of C2, so members of C2 are to members of C3” cannot be classified within the unbranching ladder of types. The whole of this essay is built upon the premise that the relation between C2 and C3 can be compared with the relation between C1 and C2. I have again and again taken a stance to the side of my ladder of logical types to discuss the structure of this ladder. The essay is therefore itself an example of the fact that the ladder is not unbranching. It follows that a next task will be to look for examples of learning which cannot be classified in terms of my hierarchy of learning but which fall to the side of this hierarchy as learning about the relation between steps of the hierarchy. I have suggested elsewhere (“Style, Grace, and Information in Primitive Art”) that art is commonly concerned with learning of this sort, i.e., with bridging the gap between the more or less unconscious premises acquired by Learning II and the more episodic content of consciousness and immediate action. It should also be noted that the structure of this essay is inductive in the sense that the hierarchy of orders of learning is presented to the reader from the bottom upward, from level zero to level III. But it is not intended that the explanations of the phenomenal world which the model affords shall be unidirectional. In explaining the model to the reader, a unidirectional approach was necessary, but within the model it is assumed that higher levels are explanatory of lower levels and vice versa. It is also assumed that a similar reflexive relation—both inductive and deductive—obtains among ideas and items of learning as these exist in the lives of the creatures which we study. Finally, the model remains ambiguous in the sense that while it is asserted that there are explanatory or determinative relations between ideas of adjacent levels both upward and downward, it is not clear whether direct explanatory relations exist between separated levels, e.g., between level III and level I or between level zero and level II. This question and that of the status of propositions and ideas collateral to the hierarchy of types remains unexamined. The Cybernetics of “Self”: A Theory of Alcoholism [71] The “logic” of alcoholic addiction has puzzled psychiatrists no less than the “logic” of the strenuous spiritual regime whereby the organization Alcoholics Anonymous is able to counteract the addiction. In the present essay it is suggested:
The present essay is based upon ideas which are, perhaps all of them, familiar either to psychiatrists who have had dealings with alcoholics, or to philosophers who have thought about the implications of cybernetics and systems theory. The only novelty which can be claimed for the thesis here offered derives from treating these ideas seriously as premises of argument and from the bringing together of commonplace ideas from two too separate fields of thought. In its first conception, this essay was planned to be a systems-theoretic study of alcoholic addiction, in which I would use data from the publications of Alcoholics Anonymous, which has the only outstanding record of success in dealing with alcoholics. It soon became evident, however, that the religious views and the organizational structure of AA presented points of great interest to systems theory, and that the correct scope of my study should include not only the premises of alcoholism but also the premises of the AA system of treating it and the premises of AA organization. My debt to AA will be evident throughout—also, I hope, my respect for that organization and especially for the extraordinary wisdom of its cofounders, Bill W. and Dr. Bob. In addition, I have to acknowledge a debt to a small sample of alcoholic patients with whom I worked intensively for about two years in 1949-52, in the Veterans Administration Hospital, Palo Alto, California. These men, it should be mentioned, carried other diagnoses—mostly of “schizophrenia”—in addition to the pains of alcoholism. Several were members of AA. I fear that I helped them not at all. It is rather generally believed that “causes” or “reasons” for alcoholism are to be looked for in the sober life of the alcoholic. Alcoholics, in their sober manifestations, are commonly dubbed “immature,” “maternally fixated,” “oral,” “homosexual,” “passive-aggressive,” “fearful of success,” “oversensitive,” “proud,” “affable,” or simply “weak.” But the logical implications of this belief are usually not examined: If the sober life of the alcoholic somehow drives him to drink or proposes the first step toward intoxication, it is not to be expected that any procedure which reinforces his particular style of sobriety will reduce or control his alcoholism. If his style of sobriety drives him to drink, then that style must contain error or pathology; and intoxication must provide some—at least subjective—correction of this error. In other words, compared with his sobriety, which is in some way “wrong,” his intoxication must be in some way “right.” The old tag In vino veritas may contain a truth more profound than is usually attributed to it. An alternative hypothesis would suggest that when sober, the alcoholic is somehow more sane than the people around him, and that this situation is intolerable. I have heard alcoholics argue in favor of this possibility, but I shall ignore it in this essay. I think that Bernard Smith, the non-alcoholic legal representative of AA, came close to the mark when he said, “the [AA] member was never enslaved by alcohol. Alcohol simply served as an escape from personal enslavement to the false ideals of a materialistic society.” [72] It is not a matter of revolt against insane ideals around him but of escaping from his own insane premises, which are continually reinforced by the surrounding society. It is possible, however, that the alcoholic is in some way more vulnerable or sensitive than the normal to the fact that his insane (but conventional) premises lead to unsatisfying results. The present theory of alcoholism, therefore, will pro-vide a converse matching between the sobriety and the intoxication, such that the latter may be seen as an appropriate subjective correction for the former. There are, of course, many instances in which people resort to alcohol and even to extreme intoxication as an anesthetic giving release from ordinary grief, resentment, or physical pain. It might be argued that the anesthetic action of alcohol provides a sufficient converse matching for our theoretical purposes. I shall, however, specifically exclude these cases from consideration as being not relevant to the problem of addictive or repetitive alcoholism; and this in spite of the undoubted fact that “grief,” “resentment,” and “frustration” are commonly used by addicted alcoholics as excuses for drinking. I shall demand, therefore, a converse matching between sobriety and intoxication more specific than that provided by mere anesthesia. The friends and relatives of the alcoholic commonly urge him to be “strong,” and to “resist temptation.” What they mean by this is not very clear, but it is significant that the alcoholic himself—while sober—commonly agrees with their view of his “problem.” He believes that he could be, or, at least, ought to be “the captain of his soul.” [73] But it is a cliche of alcoholism that after “that first drink,” the motivation to stop drinking is zero. Typically the whole matter is phrased overtly as a battle between “self” and “John Barleycorn.” Covertly the alcoholic may be planning or even secretly laying in supplies for the next binge, but it is almost impossible (in the hospital setting) to get the sober alcoholic to plan his next binge in an overt manner. He cannot, seemingly, be the “captain” of his soul and overtly will or command his own drunkenness. The “captain” can only command sobriety —and then not be obeyed. Bill W., the cofounder of Alcoholics Anonymous, himself an alcoholic, cut through all this mythology of conflict in the very first of the famous “Twelve Steps” of AA. The first step demands that the alcoholic agree that he is powerless over alcohol. This step is. usually regarded as a “surrender” and many alcoholics are either unable to achieve it or achieve it only briefly during the period of remorse following a binge. AA does not regard these cases as promising: they have not yet “hit bottom”; their despair is inadequate and after a more or less brief spell of sobriety they will again attempt to use “self-control” to fight the “temptation.” They will not or cannot accept the premise that, drunk or sober, the total personality of an alcoholic is an alcoholic personality which cannot conceivably fight alcoholism. As an AA leaflet puts it, “trying to use will power is like trying to lift yourself by your bootstraps.” The first two steps of AA are as follows:
Implicit in the combination of these two steps is an extraordinary—and I believe correct—idea: the experience of defeat not only serves to convince the alcoholic that change is necessary; it is the first step in that change. To be defeated by the bottle and to know it is the first “spiritual experience.” The myth of self-power is thereby broken by the demonstration of a greater power. In sum, I shall argue that the “sobriety” of the alcoholic is characterized by an unusually disastrous variant of the Cartesian dualism, the division between Mind and Matter, or, in this case, between conscious will, or “self,” and the remainder of the personality. Bill W.’s stroke of genius was to break up with the first “step” the structuring of this dualism. Philosophically viewed, this first step is not a surrender; it is simply a change in epistemology, a change in how to know about the personality-in-the-world. And, notably, the change is from an incorrect to a more correct epistemology. Philosophers have recognized and separated two sorts of problem. There are first the problems of how things are, what is a person, and what sort of a world this is. These are the problems of ontology. Second, there are the problems of how we know anything, or more specifically, how we know what sort of a world it is and what sort of creatures we are that can know something (or perhaps nothing) of this matter. These are the problems of epistemology. To these questions, both ontological and epistemological, philosophers try to find true answers. But the naturalist, observing human behavior, will ask rather different questions. If he be a cultural relativist, he may agree with those philosophers who hold that a “true” ontology is conceivable, but he will not ask whether the ontology of the people he observes is “true.” He will expect their epistemology to be culturally determined or even idiosyncratic, and he will expect the culture as a whole to make sense in terms of their particular epistemology and ontology. If, on the other hand, it is clear that the local epistemology is wrong, then the naturalist should be alert to the possibility that the culture as a whole will never really make “sense,” or will make sense only under restricted circumstances, which contact with other cultures and new technologies might disrupt. In the natural history of the living human being, ontology and epistemology cannot be separated. His (commonly unconscious) beliefs about what sort of world it is will determine how he sees it and acts within it, and his ways of perceiving and acting will determine his beliefs about its nature. The living man is thus bound within a net of epistemological and ontological premises which—regardless of ultimate truth or falsity—become partially self-validating for him. [75] It is awkward to refer constantly to both epistemology and ontology and incorrect to suggest that they are separable in human natural history. There seems to be no convenient word to cover the combination of these two concepts. The nearest approximations are “cognitive structure” or “character structure,” but these terms fail to suggest that what is important is a body of habitual assumptions or premises implicit in the relationship between man and environment, and that these premises may be true or false. I shall there-fore use the single term “epistemology” in this essay to cover both aspects of the net of premises which govern adaptation (or maladaptation) to the human and physical environment. In George Kelly’s vocabulary, these are the rules by which an individual “construes” his experience. I am concerned especially with that group of premises upon which Occidental concepts of the “self” are built, and conversely, with premises which are corrective to some of the more gross Occidental errors associated with that concept. The Epistemology of Cybernetics What is new and surprising is that we now have partial answers to some of these questions. In the last twenty-five years extraordinary advances have been made in our knowledge of what sort of thing the environment ‘is, what sort of thing an organism is, and, especially, what sort of thing a mind is. These advances have come out of cybernetics, systems theory, information theory, and related sciences. We now know, with considerable certainty, that the ancient problem of whether the mind is immanent or transcendent can be answered in favor of immanence, and that this answer is more economical of explanatory entities than any transcendent answer: it has at least the negative sup-port of Occam’s Razor. On the positive side, we can assert that any ongoing ensemble of events and objects which has the appropriate complexity of causal circuits and the appropriate energy relations will surely show mental characteristics. It will compare, that is, be responsive to difference (in addition to being affected by the ordinary physical “causes” such as impact or force). It will “process information” and will inevitably be self-corrective either toward homeostatic optima or toward the maximization of certain variables. A “bit” of information is definable as a difference which makes a difference. Such a difference, as it travels and undergoes successive transformation in a circuit, is an elementary idea. But, most relevant in the present context, we know that no part of such an internally interactive system can have unilateral control over the remainder or over any other part. The mental characteristics are inherent or immanent in the ensemble as a whole. Even in very simple self-corrective systems, this holistic character is evident. In the steam engine with a “governor,” the very word “governor” is a misnomer if it be taken to mean that this part of the system has unilateral control. The governor is, essentially, a sense organ or transducer which receives a transform of the difference between the actual running speed of the engine and some ideal or preferred speed. This sense organ transforms these differences into differences in some efferent message, for example, to fuel supply or to a brake. The behavior of the governor is determined, in other words, by the behavior of the other parts of the system, and indirectly by its own behavior at a previous time. The holistic and mental character of the system is most clearly demonstrated by this last fact, that the behavior of the governor (and, indeed, of every part of the causal circuit) is partially determined by its own previous behavior. Message material (i.e., successive transforms of difference) must pass around the total circuit, and the time required for the message material to return to the place from which it started is a basic characteristic of the total system. The behavior of the governor (or any other part of the circuit) is thus in some degree determined not only by its immediate past, but by what it did at a time which precedes the present by the interval necessary for the message to complete the circuit. There is thus a sort of determinative memory in even the simplest cybernetic circuit. The stability of the system (i.e., whether it will act self-correctively or oscillate or go into runaway) depends upon the relation between the operational product of all the transformations of difference around the circuit and upon this characteristic time. The “governor” has no control over these factors. Even a human governor in a social system is bound by the same limitations. He is controlled by information from the system and must adapt his own actions to its time characteristics and to the effects of his own past action. Thus, in no system which shows mental characteristics can any part have unilateral control over the whole. In other words, the mental characteristics of the system are immanent, not in some part, but in the system as a whole. The significance of this conclusion appears when we ask, “Can a computer think?” or, “Is the mind in the brain?” And the answer to both questions will be negative unless the question is focused upon one of the few mental characteristics which are contained within the computer or the brain. A computer is self-corrective in regard to some of its internal variables. It may, for example, include thermometers or other sense organs which are affected by differences in its working temperature, and the response of the sense organ to these differences may affect the action of a fan which in turn corrects the temperature. We may therefore say that the system shows mental characteristics in regard to its internal temperature. But it would be incorrect to say that the main business of the computer—the transformation of input differences into output differences—is “a mental process.” The computer is only an are of a larger circuit which always includes a man and an environment from which information is received and upon which efferent messages from the computer have effect. This total system, or ensemble, may legitimately be said to show mental characteristics. It operates by trial and error and has creative character. Similarly, we may say that “mind” is immanent in those circuits of the brain which are complete within the brain. Or that mind is immanent in circuits which are complete within the system, brain plus body. Or, finally, that mind is immanent in the larger system—man plus environment. In principle, if we desire to explain or understand the mental aspect of any biological event, we must take into account the system—that is, the network of closed circuits, within which that biological event is determined. But when we seek to explain the behavior of a man or any other organism, this “system” will usually not have the same limits as the “self”—as this term is commonly (and variously) understood. Consider a man felling a tree with an axe. Each stroke of the axe is modified or corrected, according to the shape of the cut face of the tree left by the previous stroke. This self-corrective (i.e., mental) process is brought about by a total system, tree-eyes-brain- muscles-axe-stroke-tree; and it is this total system that has the characteristics of immanent mind. More correctly, we should spell the matter out as: (differences in tree) - (differences in retina) -(differences in brain) - (differences in muscles) -(differences in movement of axe) -(differences in tree), etc. What is transmitted around the circuit is transforms of differences. And, as noted above, a difference which makes a difference is an idea or unit of information. But this is not how the average Occidental sees the event sequence of tree felling. He says, “I cut down the tree” and he even believes that there is a delimited agent, the “self,” which performed a delimited “purposive” action upon a de-limited object. It is all very well to say that “Billiard ball A hit billiard ball B and sent it into the pocket”; and it would perhaps be all right (if we could do it) to give a complete hard-science account of the events all around the circuit containing the man and the tree. But popular parlance includes mind in its utterance by invoking the personal pronoun, and then achieves a mixture of mentalism and physicalism by restricting mind within the man and reifying the tree. Finally the mind itself becomes reified by the notion that, since the “self” acted upon the axe which acted upon the tree, the “self” must also be a “thing.” The parallelism of syntax between “I hit the billiard ball” and “The ball hit another ball” is totally misleading. If you ask anybody about the localization and boundaries of the self, these confusions are immediately displayed. Or consider a blind man with a stick. Where does the blind man’s self begin? At the tip of the stick? At the handle of the stick? Or at some point halfway up the stick? These questions are nonsense, because the stick is a pathway along which differences are transmitted under transformation, so that to draw a delimiting line across this pathway is to cut off a part of the systemic circuit which determines the blind man’s locomotion. Similarly, his sense organs are transducers or pathways for information, as also are his axons, etc. From a systems-theoretic point of view, it is a misleading metaphor to say that what travels in an axon is an “impulse.” It would be more correct to say that what travels is a difference, or a transform of a difference. The metaphor of “impulse” suggests a hard-science line of thought which will ramify only too easily into nonsense about “psychic energy,” and those who talk this kind of nonsense will disregard the information content of quiescence. The quiescence of an axon differs as much from activity as its activity does from quiescence. Therefore quiescence and activity have equal informational relevance. The message of activity can only be accepted as valid if the message of quiescence can also be trusted. It is even incorrect to speak of the “message of activity” and the “message of quiescence.” Always the fact that in-formation is a transform of difference should be remembered, and we might better call the one message “activity —not quiescence” and the other “quiescence—not activity.” Similar considerations apply to the repentant alcoholic. He cannot simply elect “sobriety.” At best he could only elect “sobriety—not drunkenness,” and his universe remains polarized, carrying always both alternatives. The total self-corrective unit which processes information, or, as I say, “thinks” and “acts” and “decides,” is a system whose boundaries do not at all coincide with the boundaries either of the body or of what is popularly called the “self” or “consciousness”; and it is important to notice that there are multiple differences between the thinking system and the “self” as popularly conceived: The system is not a transcendent entity as the “self” is commonly supposed to be. The ideas are immanent in a network of causal path-ways along which transforms of difference are conducted. The “ideas” of the system are in all cases at least binary in structure. They are not “impulses” but “information.” This network of pathways is not bounded with consciousness but extends to include the pathways of all unconscious mentation—both autonomic and repressed, neural and hormonal. The network is not bounded by the skin but includes all external pathways along which information can travel. It also includes those effective differences which are immanent in the “objects” of such information. It includes the path-ways of sound and light along which travel transforms of differences originally immanent in things and other people —and especially in our own actions. It is important to note that the basic—and I believe erroneous—tenets of popular epistemology are mutually rein-forcing. If, for example, the popular premise of transcendence is discarded, the immediate substitute is a premise of immanence in the body. But this alternative will be unacceptable because large parts of the thinking network are located outside the body. The so-called “Body-Mind” problem is wrongly posed in terms which force the argument toward paradox: if mind be supposed immanent in the body, then it must be transcendent. If transcendent, it must be immanent. And so on. [76] Similarly, if we exclude the unconscious processes from the “self” and call them “ego-alien,” then these processes take on the subjective coloring of “urges” and “forces”; and this pseudodynamic quality is then extended to the conscious “self” which attempts to “resist” the “forces” of the unconscious. The “self” thereby becomes itself an organization of seeming “forces.” The popular notion which would equate “self” with consciousness thus leads into the notion that ideas are “forces”; and this fallacy is in turn supported by saying that the axon carries “impulses.” To find a way out of this mess is by no means easy. We shall proceed by first examining the structure of the alcoholic’s polarization. In the epistemologically unsound resolution, “I will fight the bottle,” what is supposedly lined up against what? Alcoholics are philosophers in that universal sense in which all human beings (and all mammals) are guided by highly abstract principles of which they are either quite unconscious, or unaware that the principle governing their perception and action is philosophic. A common misnomer for such principles is “feelings.” [77] This misnomer arises naturally from the Anglo-Saxon epistemological tendency to reify or attribute to the body all mental phenomena which are peripheral to consciousness. And the misnomer is, no doubt, supported by the fact that the exercise and/or frustration of these principles is often accompanied by visceral and other bodily sensations. I believe, however, that Pascal was correct when he said, “The heart has its reasons which the reason does not at all perceive. But the reader must not expect the alcoholic to present a consistent picture. When the underlying epistemology is full of error, derivations from it are inevitably either self-contradictory or extremely restricted in scope. A consistent corpus of theorems cannot be derived from an inconsistent body of axioms. In such cases, the attempt to be consistent leads either to the great proliferation of complexity characteristic of psychoanalytic theory and Christian theology or to the extremely narrow view characteristic of contemporary behaviorism. I shall therefore proceed to examine the “pride” which is characteristic of alcoholics to show that this principle of their behavior is derived from the strange dualistic epistemology characteristic of Occidental civilization. A convenient way of describing such principles as “pride,” “dependency,” “fatalism,” and so forth, is to examine the principle as if it were a result of deutero- learning [78] and to ask what contexts of learning might understandably inculcate this principle.
The so-called pride of the alcoholic always presumes a real or fictitious “other,” and its complete contextual definition therefore demands that we characterize the real or imagined relationship to this “other.” A first step in this task is to classify the relationship as either “symmetrical” or “complementary.” [80] To do this is not entirely simple when the “other” is a creation of the unconscious, but we shall see that the indications for such a classification are clear. An explanatory digression is, however, necessary. The primary criterion is simple: If, in a binary relationship, the behaviors of A and B are regarded (by A and B) as similar and are linked so that more of the given behavior by A stimulates more of it in B, and vice versa, then the relationship is “symmetrical” in regard to these behaviors. If, conversely, the behaviors of A and B are dissimilar but mutually fit together (as, for example, spectatorship fits exhibitionism), and the behaviors are linked so that more of A’s behavior stimulates more of B’s fitting behavior, then the relationship is “complementary” in regard to these behaviors. Common examples of simple symmetrical relationship are armaments races, keeping up with the Joneses, athletic emulation, boxing matches, and the like. Common examples of complementary relationship are dominance-submission, sadism-masochism, nurturance-dependency, spectatorship-exhibitionism, and the like. More complex considerations arise when higher logical typing is present. For example: A and B may compete in gift-giving, thus superposing a larger symmetrical frame upon primarily complementary behaviors. Or, conversely, a therapist might engage in competition with a patient in some sort of play therapy, placing a complementary nurturant frame around the primarily symmetrical transactions of the game. Various sorts of “double binds” are generated when A and B perceive the premises of their relationship in different terms—A may regard B’s behavior as competitive when B thought he was helping A. And so on. With these complexities we are not here concerned, be-cause the imaginary “other” or counterpart in the “pride” of the alcoholic does not, I believe, play the complex games which are characteristic of the “voices” of schizophrenics. Both complementary and symmetrical relationships are liable to progressive changes of the sort which I have called “schismogenesis.” [81] Symmetrical struggles and armaments races may, in the current phrase, “escalate”; and the normal pattern of succoring-dependency between parent and child may become monstrous. These potentially pathological developments are due to undamped or uncorrected positive feedback in the system, and may—as stated—occur in either complementary or symmetrical systems. However, in mixed systems schismogenesis is necessarily reduced. The armaments race between two nations will be slowed down by acceptance of complementary themes such as dominance, de-pendency, admiration, and so forth, between them. It will be speeded up by the repudiation of these themes. This antithetical relationship between complementary and symmetrical themes is, no doubt, due to the fact that each is the logical opposite of the other. In a merely symmetrical armaments race, nation A is motivated to greater efforts by its estimate of the greater strength of B. When it estimates that B is weaker, nation A will relax its efforts. But the exact opposite will happen if A’s structuring of the relationship is complementary. Observing that B is weaker than they, A will go ahead with hopes of conquest. [82] This antithesis between complementary and symmetrical patterns may be more than simply logical. Notably, in psychoanalytic theory, [83] the patterns which are called “libidinal” and which are modalities of the erogenous zones are all complementary. Intrusion, inclusion, exclusion, reception, retention, and the like—all of these are classed as “libidinal.” Whereas rivalry, competition, and the like fall under the rubric of “ego” and “defense.” It is also possible that the two antithetical codes—symmetrical and complementary—may be physiologically represented by contrasting states of the central nervous system. The progressive changes of schismogenesis may reach climactic discontinuities and sudden reversals. Symmetrical rage may suddenly turn to grief; the retreating animal with tail between his legs may suddenly “turn at bay” in a desperate battle of symmetry to the death. The bully may suddenly become the coward when he is challenged, and the wolf who is beaten in a symmetrical conflict may suddenly give “surrender” signals which prevent further attack. The last example is of special interest. If the struggle between the wolves is symmetrical—that is, if wolf A is stimulated to more aggressive behavior by the aggressive behavior of B—then if B suddenly exhibits what we may call “negative aggression,” A will not be able to continue to fight unless he can quickly switch over to that complementary state of mind in which B’s weakness would be a stimulus for his aggression. Within the hypothesis of symmetrical and complemetary modes, it becomes unnecessary to postulate a specifically “inhibitory” effect for the surrender signal. Human beings who possess language can apply the label “aggression” to all attempts to damage the other, regardless of whether the attempt is prompted by the other’s strength or weakness; but at the prelinguistic mammalian level these two sorts of “aggression” must appear totally different. We are told that from the lion’s point of view, an “attack” on a zebra is totally different from an “attack” on another lion. [84] Enough has now been said so that the question can be posed: Is alcoholic pride contextually structured in symmetrical or complementary form? First, there is a very strong tendency toward symmetry in the normal drinking habits of Occidental culture. Quite apart from addictive alcoholism, two men drinking together are impelled by convention to match each other, drink for drink. At this stage, the “other” is still real and the symmetry, or rivalry, between the pair is friendly. As the alcoholic becomes addicted and tries to resist drinking, he begins to find it difficult to resist the social context in which he should match his friends in their drinking. The AA says, “Heaven knows, we have tried hard enough and long enough to drink like other people!” As things get worse, the alcoholic is likely to become a solitary drinker and to exhibit the whole spectrum of response to challenge. His wife and friends begin to suggest that his drinking is a weakness, and he may respond, with symmetry, both by resenting them and by asserting his strength to resist the bottle. But, as is characteristic of symmetrical responses, a brief period of successful struggle weakens his motivation and he falls off the wagon. Symmetrical effort requires continual opposition from the opponent. Gradually the focus of the battle changes, and the alcoholic finds himself committed to a new and more deadly type of symmetrical conflict. He must now prove that the bottle cannot kill him. His “head is bloody but unbowed.” He is still the “captain of his soul”—for what it’s worth. Meanwhile, his relationships with wife and boss and friends have been deteriorating. He never did like the complementary status of his boss as an authority; and now as he deteriorates his wife is more and more forced to take a complementary role. She may try to exert authority, or she becomes protective, or she shows forbearance, but all those provoke either rage or shame. His symmetrical “pride” can tolerate no complementary role. In sum, the relationship between the alcoholic and his real or fictitious “other” is clearly symmetrical and clearly schismogenic. It escalates. We shall see that the religious conversion of the alcoholic when saved by AA can be de-scribed as a dramatic shift from this symmetrical habit, or epistemology, to an almost purely complementary view of his relationship to others and to the universe or God. Alcoholics may appear to be stiff-necked, but they are not stupid. The part of the mind in which their policy is decided certainly lies too deep for the word “stupidity” to be applicable. These levels of the mind are prelinguistic and the computation which goes on there is coded in primary process. Both in dream and in mammalian interaction, the only way to achieve a proposition which contains its own negation (“I will not bite you,” or “I am not afraid of him”) is by an elaborate imagining or acting out of the proposition to be negated, leading to a reductio ad absurdum. “I will not bite you” is achieved between two mammals by an experimental combat which is a “not combat,” sometimes called “play.” It is for this reason that “agonistic” behavior commonly evolves into friendly greeting. [85] In this sense, the so-called pride of the alcoholic is in some degree ironic. It is a determined effort to test some-thing like “self-control” with an ulterior but unstateable purpose of proving that “self-control” is ineffectual and absurd. “It simply won’t work.” This ultimate proposition, since it contains a simple negation, is not to be expressed in primary process. Its final expression is in an action—the taking of a drink. The heroic battle with the bottle, that fictitious “other,” ends up in a “kiss and make friends.” In favor of this hypothesis, there is the undoubted fact that the testing of self-control leads back into drinking. And, as I have argued above, the whole epistemology of self-control which his friends urge upon the alcoholic is monstrous. If this be so, then the alcoholic is right in rejecting it. He has achieved a reductio ad absurdum of the conventional epistemology. But this description of achieving a reductio ad absurdum verges upon teleology. If the proposition “It won’t work” can-not be entertained within the coding of primary process, how then can the computations of primary process direct the organism to try out those courses of action which will demonstrate that “It won’t work”? Problems of this general type are frequent in psychiatry and can perhaps only be resolved by a model in which, under certain circumstances, the organism’s discomfort activates a positive feedback loop to increase the behavior which preceded the discomfort. Such positive feedback would provide a verification that it was really that particular behavior which brought about the discomfort, and might in-crease the discomfort to some threshold level at which change would become possible. In psychotherapy such a positive feedback loop is commonly provided by the therapist who pushes the patient in the direction of his symptoms—a technique which has been called the “therapeutic double bind.” An example of this technique is quoted later in this essay, where the AA member challenges the alcoholic to go and do some “controlled drinking” in order that he may discover for himself that he has no control. It is also usual that the symptoms and hallucinations of the schizophrenic—like dreams—constitute a corrective experience, so that the whole schizophrenic episode takes on the character of a self-initiation. Barbara O’Brien’s account of her own psychosis [86] is perhaps the most striking example of this phenomenon, which has been discussed elsewhere. [87] It will be noted that the possible existence of such a positive feedback loop, which will cause a runaway in the direction of increasing discomfort up to some threshold (which might be on the other side of death), is not included in conventional theories of learning. But a tendency to verify the unpleasant by seeking repeated experience of it is a common human trait. It is perhaps what Freud called the “death instinct.” What has been said above about the treadmill of symmetrical pride is only one half of the picture. It is the picture of the state of mind of the alcoholic battling with the bottle. Clearly this state is very unpleasant and clearly it is also unrealistic. His “others” are either totally imaginary or are gross distortions of persons on whom he is dependent and whom he may love. He has an alternative to this uncomfortable state—he can get drunk. Or, “at least,” have a drink. With this complementary surrender, which the alcoholic will often see as an act of spite—a Barthian dart in a symmetrical struggle—his entire epistemology changes. His anxieties and resentments and panic vanish as if by magic. His self-control is lessened, but his need to compare himself with others is reduced even further. He feels the physiological warmth of alcohol in his veins and, in many cases, a corresponding psychological warmth toward others. He may be either maudlin or angry, but he has at least become again a part of the human scene. Direct data bearing upon the thesis that the step from sobriety into intoxication is also a step from symmetrical challenge into complementarity are scarce, and always confused both by the distortions of recall and by the complex toxicity of the alcohol. But there is strong evidence from song and story to indicate that the step is of this kind. In ritual, partaking of wine has always stood for the social aggregation of persons united in religious “communion” or secular Gemütlichkeit. In a very literal sense, alcohol supposedly makes the individual see himself as and act as a part of the group. That is, it enables complementarity in the relationships which surround him. AA attaches great importance to this phenomenon and regards the alcoholic who has not hit bottom as a poor prospect for their help. Conversely, they are inclined to explain their failure by saying that the individual who goes back to his alcoholism has not yet “hit bottom.” Certainly many sorts of disaster may cause an alcoholic to hit bottom. Various sorts of accidents, an attack of delirium tremens, a patch of drunken time of which he has no memory, rejection by wife, loss of job, hopeless diagnosis, and so on—any of these may have the required effect. AA says that “bottom” is different for different men and some may be dead before they reach it. [88] It is possible, however, that “bottom” is reached many times by any given individual; that “bottom” is a spell of panic which provides a favorable moment for change, but not a moment at which change is inevitable. Friends and relatives and even therapists may pull the alcoholic out of his panic, either with drugs or reassurance, so that he “re-covers” and goes back to his “pride” and alcoholism— only to hit a more disastrous “bottom” at some later time, when he will again be ripe for a change. The attempt to change the alcoholic in a period between such moments of panic is unlikely to succeed. The nature of the panic is made clear by the following description of a “test.” We do not like to pronounce any individual as alcoholic, but you can quickly diagnose yourself. Step over to the nearest barroom and try some controlled drinking. Try to drink and stop abruptly. Try it more than once. It will not take long for you to decide, if you are honest with yourself about it. It may be worth a bad case of jitters if you get a full knowledge of your condition. [89] We might compare the test quoted above to commanding a driver to brake suddenly when traveling on a slippery road: he will discover fast that his control is limited. (The metaphor “skid row” for the alcoholic section of town is not inappropriate.) The panic of the alcoholic who has hit bottom is the panic of the man who thought he had control over a vehicle but suddenly finds that the vehicle can run away with him. Suddenly, pressure on what he knows is the brake seems to make the vehicle go faster. It is the panic of discovering that it (the system, self plus vehicle) is bigger than he is. In terms of the theory here presented, we may say that hitting bottom exemplifies systems theory at three levels:
(4) Lastly, the phenomenon of hitting bottom is complexly related to the experience of double bind. [90] Bill W. narrates that he hit bottom when diagnosed as a hopeless alcoholic by Dr. William D. Silkworth in 1939, and this event is regarded as the beginning of AA history. [91] Dr. Silkworth also “supplied us with the tools with which to puncture the toughest alcoholic ego, those shattering phrases by which he described our illness: the obsession of the mind that compels us to drink and the allergy of the body that condemns us to go mad or die.” [92] This is a double bind correctly founded upon the alcoholic’s dichotomous epistemology of mind versus body. He is forced by these words back and back to the point at which only an involuntary change in deep unconscious epistemology—a spiritual experience—will make the lethal description irrelevant. The Theology of Alcoholics Anonymous Some outstanding points of the theology of AA are:
There is, however, this: that the single purpose of AA is directed outward and is aimed at a noncompetitve relationship to the larger world. The variable to be maximized is a complementarity and is of the nature of “service” rather than dominance. The Epistemological Status of Complementary and Symmetrical Premises It was noted above that in human interaction, symmetry and complementarity may be complexly combined. It is therefore reasonable to ask how it is possible to regard these themes as so fundamental that they shall be called “epistemological,” even in a natural history study of cultural and interpersonal premises. The answer seems to hang upon what is meant by “fundamental” in such a study of man’s natural history; and the word seems to carry two sorts of meaning. First, I call more fundamental those premises which are the more deeply embedded in the mind, which are the more “hard programmed” and the less susceptible to change. In this sense, the symmetrical pride or hubris of the alcoholic is fundamental. Second, I shall call more fundamental those premises of mind which refer to the larger rather than the smaller systems or gestalten of the universe. The proposition “Grass is green” is less fundamental than the proposition “Color differences make a difference.” But, if we ask about what happens when premises are changed, it becomes clear that these two definitions of the “fundamental” overlap to a very great extent. If a man achieves or suffers change in premises which are deeply embedded in his mind, he will surely find that the results of that change will ramify throughout his whole universe. Such changes we may well call “epistemological.” The question then remains regarding what is epistemologically “right” and what is epistemologically “wrong.” Is the change from alcoholic symmetrical “pride” to the AA species of complementarity a correction of his epistemology? And is complementarity always somehow better than symmetry? For the AA member, it may well be true that complementarity is always to be preferred to symmetry and that even the trivial rivalry of a game of tennis or chess may be dangerous. The superficial episode may touch off the deeply embedded symmetrical premise. But this does not mean that tennis and chess propose epistemological error for everybody. The ethical and philosophic problem really concerns only the widest universe and the deepest psychological levels. If we deeply and even unconsciously believe that our relation to the largest system which concerns us—the “Power greater than self”—is symmetrical and emulative, then we are in error. Finally, the above analysis is subject to the following limitations and implications: It is not asserted that all alcoholics operate according to the logic which is here outlined. It is very possible that other types of alcoholics exist and almost certain that alcoholic addiction in other cultures will follow other lines.
It is, however, asserted that the nonalcoholic world has many lessons which it might learn from the epistemology of systems theory and from the ways of AA. If we continue to operate in terms of a Cartesian dualism of mind versus matter, we shall probably also continue to see the world in terms of God versus man; elite versus people; chosen race versus others; nation versus nation; and man versus environment. It is doubtful whether a species having both an advanced technology and this strange way of looking at its world can endure. In the essays collected in Part III, I speak of an action or utterance as occurring “in” a context, and this conventional way of talking suggests that the particular action is a “dependent” variable, while the context is the “independent” or determining variable. But this view of how an action is related to its context is likely to distract the reader—as it has distracted me—from perceiving the ecology of the ideas which together constitute the small subsystem which I call “context.” This heuristic error—copied like so many others from the ways of thought of the physicist and chemist—requires correction. It is important to see the particular utterance or action as part of the ecological subsystem called context and not as the product or effect of what remains of the context after the piece which we want to explain has been cut out from it. The mistake in question is the same formal error as that mentioned in the comment on Part II where I discuss the evolution of the horse. We should not think of this process just as a set of changes in the animal’s adaptation to life on the grassy plains but.as a constancy in the relationship between animals and environment. It is the ecology which survives and slowly evolves. In this evolution, the relata—the animals and the grass—undergo changes which are indeed adaptive from moment to moment. But if the process of adaptation were the whole story, there could be no systemic pathology. Trouble arises precisely because the “logic” of adaptation is a different “logic” from that of the survival and evolution of the ecological system. In Warren Brodey’s phrase, the “time-grain” of the adaptation is different from that of the ecology. “Survival” means that certain descriptive statements about some living system continue to be true through some period of time; and, conversely, “evolution” refers to changes in the truth of certain descriptive statements about some living system. The trick is to define which statements about which systems remain true or undergo change. The paradoxes (and the pathologies) of systemic process arise precisely because the constancy and survival of some larger system is maintained by changes in the constituent subsystems. The relative constancy—the survival—of the relationship between animals and grass is maintained by changes in both relata. But any adaptive change in either of the relata, if uncorrected by some change in the other, will always jeopardize the relationship between them. These arguments propose a new conceptual frame for the “double bind” hypothesis, a new conceptual frame for thinking about “schizophrenia,” and a new way of looking at context and levels of learning. In a word, schizophrenia, deutero-learning, and the double bind cease to be matters of individual psychology and be-come part of the ecology of ideas in systems or “minds” whose boundaries no longer coincide with the skins of the participant individuals. _______________ Notes: 1. This article was my comment on Margaret Mead's article “The Comparative Study of Culture and the Purposive Cultivation of Democratic Values,” published as Chapter IV of Science, Philosophy and Religion, Second Symposium, copyright 1942 by the Conference on Science, Philosophy and Religion, New York. It is here reprinted by permission of the Conference and of Harper & Row, Inc. I have italicized a parenthesis in footnote 5 which pre-figures the concept of the “double bind.” 2. Dr. Mead writes: “. . those students who have devoted themselves to studying cultures as wholes, as systems of dynamic equilibrium, can make the following contributions:… “4. Implement plans for altering our present culture by recognizing the importance of including the social scientist within his experimental material, and by recognizing that by working toward defined ends we commit ourselves to the manipulation of persons, and therefore to the negation of democracy. Only by working in terms of values which are limited to defining a direction is it possible for us to use scientific methods in the control of the process without the negation of the moral autonomy of the human spirit.” (Italics hers.) 3. Psychological papers bearing upon this problem of the relationship between gestalt and simple learning are very numerous, if we include all who have worked on the concepts of transfer of learning, generalization, irradiation, reaction threshold (Hull), insight, and the like. Historically, one of the first to pose these questions was Mr. Frank (L. K. Frank, “The Problems of Learning,” Psych. Review, 1926, 33: 329–51; and Professor Maier has recently introduced a concept of “direction” which is closely related to the notion of “deutero-learning.” He says: “direction … is the force which integrates memories in a particular manner without being a memory itself.” (N. R. F. Maier, “The Behavior Mechanisms Concerned with Problem Solving,”- Psych. Review, 1940, 47: 43–58.) If for “force” we substitute “habit,” and for “memory” we substitute “experience of the stream of events,” the concept of deutero-learning can be seen as almost synonymous with Professor Maier's concept of “direction.” 4. It will be noted that the operational definition of deutero-learning is necessarily somewhat easier than that of proto-learning. Actually, no simple learning curve represents proto-learning alone. Even within the duration of the single learning experiment we must suppose that some deutero-learning will occur, and this will make the gradient at any point somewhat steeper than the hypothetical gradient of “pure” proto-learning. 5. C. Hull, Mathematico-Deductive Theory of Rote Learning, New Haven, Yale University Press, 1940. 6. Various classifications have been devised for purposes of exposition. Here I follow that of Hilgard and Marquis (E. R. Hilgard and D. G. Marquis, Conditioning and Learning, New York, Appleton Century Co., 1940). These authors subject their own classification to a brilliant critical analysis, and to this analysis I am indebted for one of the formative ideas upon which this paper is based. They insist that any learning context can be described in terms of any theory of learning, if we are willing to stretch and overemphasize certain aspects of the context to fit onto the Procrustean bed of the theory. I have taken this notion as a cornerstone of my thinking, substituting “apperceptive habits” for “theories of learning,” and arguing that almost any sequence of events can be stretched and warped and punctuated to fit in with any type of apperceptive habit. (We may suppose that experimental neurosis is what happens when the subject fails to achieve this assimilation.) I am also indebted to Lewin's topological analysis of the contexts of reward and punishment. (K. Lewin, A Dynamic Theory of Personality, New York, McGraw-Hill Book Co., 1936.) 7. Many people feel that the contexts of experimental learning are so oversimplified as to have no bearing upon the phenomena of the real world. Actually, expansion of this classification will give means of defining systematically many hundreds of possible contexts of learning with their associated apperceptive habits. The scheme may be expanded in the following ways:
8. Dorothy Lee, “A Primitive System of Values,” Journal Philos. of Science, 1940, 7: 355-78. 9. A It is possible that semi-Pavlovian phrasings of the stream of events tend, like the experiments which are their prototypes, to hinge particularly upon autonomic reactions—that those who see events in these terms tend to see these reactions, which are only partially subject to voluntary control, as peculiarly effective and powerful causes of outside events. There may be some ironical logic in Pavlovian fatalism which predisposes us to believe that we can alter the course of events only by means of those behaviors which we are least able to control. 10. The Balinese material collected by Dr. Mead and my-self has not yet been published in extenso, but a brief out-line of the theory here suggested is available—cf. G. Bateson, “The Frustration-Aggression Hypothesis and Culture,” Psychological Review, 1941, 48: 350-55. 11. This essay was read (by Jay Haley) at the A.P.A. Regional Research Conference in Mexico City, March 11, 1954. It is here reprinted from A.P.A. Psychiatric Research Reports, II, 1955, by permission of the American Psychiatric Association. 12. A. N. Whitehead and B. Russell, Principia Mathematica, 3 vols., 2nd ed., Cambridge, Cambridge University Press, 1910-13. 13. L. Wittgenstein, Tractatus Logico-Philosophicus, Lon-don, Harcourt Brace, 1922. 14. R. Carnap, The Logical Syntax of Language, New York, Harcourt Brace, 1937. 15. B. L. Whorf, “Science and Linguistics,” Technology Review, 1940, 44: 229-48. 16. J. Ruesch and G. Bateson, Communication: The Social Matrix of Psychiatry, New York, Norton, 1951. 17. A. Korzybski, Science and Sanity, New York, Science Press, 1941. 18. The verbalization of these metalinguistic rules is a much later achievement which can only occur after the evolution of a nonverbalized meta-metalinguistics. 19. N. Tinbergen, Social Behavior in Animals with Special Reference to Vertebrates, London, Methuen, 1953. 20. K. Z. Lorenz, King Solomon's Ring, New York, Crowell, 1952. 21. Ibid. 22. C. R. Carpenter, “A Field Study of the Behavior and Social Relations of Howling Monkeys,” Comp. Psychol. Monogr., 1934, 10: 1-168. 23. A. R. Radcliffe-Brown, The Andaman Islanders, Cambridge, Cambridge University Press, 1922. 24. W. S. McCulloch, “A Heterarchy of Values, etc.,” Bulletin of Math. Biophys., 1945, 7: 89-93. 25. Whitehead and Russell, op. cit. 26. This is an edited version of a talk, “How the Deviant Sees His Society,” given in May, 1955, at a conference on “The Epidemiology of Mental Health” held at Brighton, Utah, sponsored by the Departments of Psychiatry and Psychology of the University of Utah, and the Veterans Administration Hospital, Fort Douglas Division, of Salt Lake City, Utah. A rough transcript of the talks at this conference was mimeographed and circulated by the organizers. 27. This paper by Gregory Bateson, Don D. Jackson, Jay Haley, and. John H. Weakland is here reproduced from Behavioral Science, Vol. I, No. 4, 1956, by permission of Behavioral Science. 28. This paper derives from hypotheses first developed in a research project financed by the Rockfeller Foundation from 1952-54, administered by the Department of Sociology and Anthropology at Stanford University and directed by Gregory Bateson. Since 1954 the project has financed by the Josiah Macy, Jr. Foundation. To Jay Haley is due credit for recognizing that the symptoms of schizophrenia are suggestive of an inability to discriminate the Logical Types, and this was amplified by Bateson, who added the notion that the symptoms and etiology could be formally described in terms of a double bind hypothesis. The hypothesis was communicated to D. D. Jackson and found to fit closely with his ideas of family homeostasis. Since then Dr. Jackson has worked closely with the project. The study of the formal analogies between hypnosis and schizophrenia has been the work of John H. Weakland and Jay Haley. 29. A. N. Whitehead and B. Russell, Principia Mathematica, Cambridge, Cambridge University Press, 1910. 30. G. Bateson, “A Theory of Play and Fantasy,” Psychiatric Research Reports, 1955, 2: 39-51. 31. A film prepared by this project, “The Nature of Play; Part I, River Otters,” is available. 32. C. R. Carpenter, “A Field Study of the Behavior and Social Relations of Howling Monkeys,” Comp. Psychol. Monogr., 1934, 10: 1–168; also K. Z. Lorenz, King Solomon's Ring, New York, Crowell, 1952. 33. G. Bateson, “Social Planning and the Concept of Deutero-Learning,” Conference on Science, Philosophy and Religion, Second Symposium, New York, Harper, 1942. (See above, p. 159) ; also H. F. Harlow, “The Formation of Learning Sets,” Psychol. Review, 1949, 56: 51–65; also C. L. Hull, et al., Mathematico-deductive Theory of Rote Learning, New Haven, Yale University Press, 1940. 34. E. von Domarus, “The Specific Laws of Logic in Schizophrenia,” Language and Thought in Schizophrenia, J. S. Kasanin, ed., Berkeley, University of California Press, 1944. 35. Our concept of punishment is being refined at present. It appears to us to involve perceptual experience in a way that cannot be encompassed by the notion of “trauma.” 36. J. Perceval, A Narrative of the Treatment Experienced by a Gentleman During a State of Mental Derangement, Designed to Explain the Causes and Nature of Insanity, etc., London, Effingham Wilson, 1836 and 1840. (See bibliographic item, 1961 a.) 37. R. Hilgard, “Anniversary Reactions in Parents Precipitated by Children,” Psychiatry, 1953, 16: 73-80. 38. G. Bateson, “. . . Play and Fantasy,” op. cit. 39. D. D. Jackson, “The Question of Family Homeostasis,” presented at the American Psychiatric Association Meeting, St. Louis, May 7, 1954; also Jackson, “Some Factors Influencing the Oedipus Complex,” Psychoanalytic Quarterly, 1954, 23: 566-81. 40. D. D. Jackson, “An Episode of Sleepwalking,” Journal of the American Psychoanalytic Association, 1954, 2: 503—508; also Jackson, “Some Factors . . . ,” Psycho-analytic Quarterly, 1954, 23: 566—581. 41. Bateson, “ A Theory of Play …” op. cit. 42. M. H. Erickson, Personal communication, 1955. 43. F. Fromm-Reichmann, Personal communication, 1956. 44. The ideas in this lecture represent the combined thinking of the staff of The Project for the Study of Schizophrenic Communication. The staff consisted of Gregory Bateson, Jay Haley, John H. Weakland, Don D. Jackson, M.D., and William F. Fry, M.D The article is reprinted from Chronic Schizophrenia: Explorations in Theory and Treatment, edited by L. Appleby, J. M. Scher, and J. Cumming, The Free Press, Glencoe, Illinois, 1960; reprinted by permission. 45. R. L. Stevenson, “The Poor Thing,” Novels and Tales of Robert Louis Stevenson, Vol. 20, New York, Scribners, 1918, pp. 496-502. 46. D . W. Thompson, On Growth and Form, Vol. 2, Ox-ford, Oxford University Press, 1952. 47. Beatrice C. Bateson, William Bateson, Naturalist, Cambridge, Cambridge University Press, 1928. 48. G. Bateson, D. D. Jackson, J. Haley, and J. H. Weak-land, “Toward a Theory of Schizophrenia,” Behavioral Science, 1956, 1: 251–64; also G. Bateson, “Language and Psychotherapy, Frieda Fromm-Reichmann's Last Project,” Psychiatry, 1958, 21: 96–100; also G. Bateson (moderator), “Schizophrenic Distortions of Communication,” Psychotherapy of Chronic Schizophrenic Patients, C. A. Whitacker, ed., Boston and Toronto, Little, Brown and Co., 1958, pp. 31– 56; also G. Bateson, “Analysis of Group Therapy in an Admission Ward, United States Naval Hospital, Oakland, California,” Social Psychiatry in Action, H. A. Wilmer, Springfield, Ill., Charles C. Thomas, 1958, pp. 334–49; also J. Haley, “The Art of Psychoanalysis,” etc., 1958, .15: 190–200; also J. Haley, “An Interactional Explanation of Hypnosis,” American Journal of Clinical Hypnosis, 1958, 1: 41–57; also J. H. Weakland and D. D. Jackson, “Patient and Therapist Observations on the Circumstances of a Schizophrenic Episode,” AMA Archives of Neurological Psychiatry, 1958, 79: 554– 74. 49. H. F. Jones, Samuel Butler: A Memoir, Vol. 1, London, Macmillan, 1919. 50. J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton, Princeton University Press, 1944. 51. Second Annual Albert D. Lasker Memorial Lecture, delivered at the Institute for Psychosomatic and Psychiatric Research and Training of the Michael Reese Hospital, Chicago, April 7, 1959. This lecture is here reprinted by permission of the A.M.A. Archives of General Psychiatry where it appeared in 1960, Vol. 2, pp. 477-491. 52. 1971. In my final version of this hierarchy of orders of learning, published in this volume as “The Logical Categories of Learning and Communication,” (see p. 283) I have used a different system of numbering. The receipt of a signal is there called “Zero Learning”; changes in Zero Learning are called Learning I; “deuterolearning” is called Learning II, etc. 53. C. L. Hull, et al., Mathematico-deductive Theory of Rote Learning: A Study in Scientific Methodology, (Yale University Institute of Human Relations), New Haven, Yale University Press, 1940; also H. F. Harlow, “The Formation of Learning Sets,” Psychol. Review, 1949, 56: 51-65. 54. In this sense, of course, all the theories of change assume that the next change is in some degree prefigured in the system which is to undergo that change. 55. These considerations alter somewhat the old problem of the evolutionary effect of use and disuse. Orthodox theory could only suggest that a mutation reducing the (potential) size of a disused organ had survival value in terms of the resulting economy of tissue. The present theory would suggest that atrophy of an organ, occurring at the somatic level, may constitute a drain upon the total available adaptability of the organism, and that this waste of adaptability might be saved if reduction of the organ could be achieved more directly by genetic determinants. 56. The name of Newton certainly belongs in this list. But the man himself was of a different kidney. His mystical preoccupation with alchemy and apocalyptic writings, and his secret theological monism indicate that he was not the first objective scientist but, rather, the “last of the magicians” (see J. M. Keynes, “Newton, the Man,” Tercentenary Celebrations, London, Cambridge University Press, 1947, pp. 27-34). Newton and Blake were alike in devoting much time and thought to the mystical works of Jacob Boehme. 57. This paper was given in August, 1969, at a Symposium on the Double Bind; Chairman, Dr. Robert Ryder; sponsored by the American Psychological Association. It was prepared under Career Development Award (MH-21,931) of the National Institute of Mental Health. 58. What is important, however, is that the proposition be constantly true, rather than that it be abstract. It just so happens—coincidentally—that abstractions, if well chosen, have a constancy of truth. For human beings it is rather constantly true that air is present around the nose; the reflexes which control respiration can therefore be hard-programmed in the medulla. For the porpoise, the proposition “air around the blowhole” is only intermittently true, and therefore respiration must be controlled in a more flexible manner from some higher center. 59. Formally correct because morphogenesis, like behavior, is surely a matter of messages in contexts. (See G. Bateson, “A Re-examination of 'Bateson's Rule,'“ Journal of Genetics, in press.) 60. K. Pryor, R. Haag, and J. O'Rielly, “Deutero-Learning in a Roughtooth Porpoise (Steno bredanensis),” U. S. Naval Ordinance Test Station, China Lake, NOTS TP 4270 61. This essay was written in 1964 while the author was employed by the Communications Research Institute, under a Career Development Award (K3-NH-21, 931) from the National Institute of Mental Health. It was submitted as a position paper to the “Conference on World Views” sponsored by the Wenner-Gren Foundation, August 2-11, 1968. The section on “Learning III” was added in 1971. 62. A. N. Whitehead and B. Russell, Principia Mathematica, 3 vols., 2nd ed., Cambridge, Cambridge University Press, 1910-13. 63. It is conceivable that the same words might be used in describing both a class and its members and be true in both cases. The word “wave” is the name of a class of movements of particles. We can also say that the wave itself “moves,” but we shall be referring to a movement of a class of movements. Under friction, this metamovement will not lose velocity as would the movement of a particle. 64. The Newtonian equations which describe the motions of a “particle” stop at the level of “acceleration.” Change of acceleration can only happen with deformation of the moving body, but the Newtonian “particle” was not made up of “parts” and was therefore (logically) incapable of deformation or any other internal change. It was therefore not subject to rate of change of acceleration. 65. G. Bateson, “Social Planning and the Concept of Deutero-Learning,” Conference on Science, Philosophy and Religion, Second Symposium, New York, Harper, 1942. 66. H. E. Harlow, “The Formation of Learning Sets,” Psycho!. Review, 1949, 56: 51-65. 67. E. L. Hull, et al., Mathematico-deductive Theory of Rote Learning, New Haven, Yale University, Institute of Human Relations, 1940 68. H . S. Liddell, “Reflex Method and Experimental Neurosis,” Personality and Behavior Disorders, New York, Ronald Press, 1944 69. G. Bateson, et al., “Toward a Theory of Schizophrenia,” Behavioral Science, 1956, 1: 251-64. 70. J. Ruesch and G. Bateson, Communication: The Social Matrix of Psychiatry, New York, Norton, 1951. 71. This article appeared in Psychiatry, Vol. 34, No. 1, pp. 1-18, 1971. Copyright © 1971 by the William Alanson White Psychiatric Foundation. Reprinted by permission of Psychiatry. 72. [Alcoholics Anonymous], Alcoholics Anonymous Comes of Age, New York, Harper, 1957, p. 279. (Italics added.) 73. This phrase is used by AA in derision of the alcoholic who tries to use will power against the bottle. The quotation, along with the line, “My head is bloody but unbowed,” comes from the poem “Invictus” by William Ernest Henley, who was a cripple but not an alcoholic. The use of the will to conquer pain and physical disability is probably not comparable to the alcoholic's use of will. 74. [Alcoholics Anonymous], Alcoholics Anonymous, New York, Works Publishing, 1939. 75. J. Ruesch and G. Bateson, Communications: The Social Matrix of Psychiatry, New York, Norton, 1951. 76. “ R. G. Collingwood, The Idea of Nature, Oxford, Ox-ford University Press, 1945. 77. “ G. Bateson, “A Social Scientist Views the Emotions,” Expression of the Emotions in Man, P. Knapp, ed., International University Press, 1963. 78. This use of formal contextual structure as a descriptive device does not necessarily assume that the principle discussed is wholly or in part actually learned in contexts having the appropriate formal structure. The principle could have been genetically determined, and it might still follow that the principle is best described by the formal delineation of the contexts in which it is exemplified. It is precisely this fitting of behavior to context that makes it difficult or impossible to determine whether a principle of behavior was genetically determined or learned in that context; see G. Bateson, “Social Planning and the Concept of Deutero-Learning,” Conference on Science, Philosophy and Religion, Second Symposium, New York, Harper, 1942. 79. See Bill's Story, Alcoholics Anonymous, op. cit. 80. G. Bateson, Naven, Cambridge, Cambridge University Press, 1936. 81. Ibid. 82. G. Bateson, “The Pattern of an Armaments Race–Part I: An Anthropological Approach,” Bulletin of Atomic Scientists, 1946, 2(5): 10–11: also L. F. Richardson, “Generalized Foreign Politics,” British Journal of Psychology, Monograph Supplements, 1939. 83. E. H. Erikson, “Configurations in Play—Clinical Notes,” Psychoanalytic Quarterly, 1937, 6: 139–214. 84. 13 K. Z. Lorenz, On Aggression, New York, Harcourt, Brace & World, 1966. 85. G. Bateson, “Metalogue: What Is an Instinct?,” Aproaches to Animal Communication, T. Sebeok, Hague, Mouton, 1969. 86. B. O'Brien, Operators and Things: The Inner Life of a Schizophrenic, Cambridge, Mass., Arlington Books, 1958. 87. G. Bateson, ed., Perceval's Narrative, Stanford, Calif., Stanford University Press, 1961, Introduction. 88. Personal communication from a member. 89. Alcoholics Anonymous, op. cit., p. 43. 90. Bateson, et al., “Toward a Theory of Schizophrenia,” Behavioral Science, 1956, 1: 251-64. 91. A A Comes of Age, op. cit., p. vii. 92. Ibid., p. 13. (Italics in the original) 93. This diversity in styles of integration could account for the fact that some persons become alcoholic while others do not. 94. AA Comes of Age, op. cit. 24 Ibid., p. 288. 25 Ibid., pp. 286-94. 95. Ibid, p. 288. 96. Ibid, pp.286-294 97. Ibid. 98. M. C. Bateson, ed., Our Own Metaphor, Wenner-Gren Foundation, Conference on the Effects of Conscious Purpose on Human Adaptation, 1968; New York, Knopf, in press. 99. This was not originally an AA document and its authorship is unknown. Small variations in the text occur. I have quoted the form which I personally prefer from AA Comes of Age, op. cit., p. 196. 100. Bateson, Perceval . . . , op. cit.
|